Programa Regional de Cambio Climático de USAID

Reduciendo la vulnerabilidad al cambio climático del sector cafetalero en Guatemala

Manual Técnico para el fortalecimiento del sector de café en Guatemala frente al cambio climático
Reduciendo la vulnerabilidad al cambio climático del sector cafetalero en Guatemala

Manual Técnico para el fortalecimiento del sector de café en Guatemala frente al cambio climático

Julio, 2016
Este documento se elaboró a partir de los aportes recibidos del personal técnico de la Asociación Nacional del Café de Guatemala (Anacafé), el Proyecto Clima, Naturaleza y Comunidades en Guatemala (CNCG), el Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (Insivumeh) de Guatemala, el Programa Regional de Cambio Climático y del Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Todos ellos participaron activamente en el proceso de elaboración y revisión de este manual técnico, diseñado para técnicos extensionistas.

Un agradecimiento especial al Programa Cooperativo para el Desarrollo Tecnológico y la Modernización de la Caficultura en Centroamérica, República Dominicana y Jamaica (Promecafé), que impulsó la iniciativa con el fin de apoyar los procesos de fortalecimiento de los institutos del café de la región.

Copyright: © 2016

Programa Regional de Cambio Climático

Citar como:

Créditos
Este manual fue elaborado gracias al apoyo del Programa Regional de Cambio Climático, Proyecto de Cadenas de Valor Rurales (PCVR) y el Proyecto Clima, Naturaleza y Comunidades en Guatemala (CNCG) proyectos que han sido financiados por la Agencia de los Estados Unidos para el Desarrollo Internacional (USAID). Adicionalmente se recibió el apoyo también de la Agencia de Cooperación Italiana.

Elaboración técnica: Gabriela Soto, Elena Florian, Elías de Melo Virginio Filho, Carlos Astorga, CATIE
Revisión técnica: Ligia Mariela Meléndez Perez (Anacafé), Juan Carlos Villagrán (CNCG), Mario Enrique Chocooj (Cedicafé, Anacafé), Víctor Rodas Roldán (CNCG), Rafael Velázquez (Anacafé) y Bayron Medina.
Edición: Elizabeth Mora
Ilustración: Oficina de Comunicación CATIE y Luis Gutiérrez
Diseño gráfico y diagramación: Rocio Jiménez, Oficina de Comunicación CATIE

Agradecimiento: Se agradece el apoyo de todas las personas que participaron en los talleres de validación de este manual en las regiones de San Marcos y Cobán, Guatemala. Al Centro de Investigaciones en Café (CEDICAFE), por los aportes brindados.

Los materiales incluidos en este manual pueden ser reproducidos sin previa autorización en actividades de capacitación sin fines de lucro, con la condición de que se mencione la fuente.

El presente manual se elaboró con el financiamiento de la Agencia de los Estados Unidos para el Desarrollo Internacional (USAID) a través del Programa Regional de Cambio Climático. El contenido de este manual es responsabilidad de los autores y no necesariamente refleja la opinión de la USAID ni del Gobierno de los Estados Unidos.
Contenido

Abreviaturas y siglas ................................................................. 5
Presentación ........................................................................... 7

Módulo I. El aprendizaje integral y su importancia
Importancia del aprendizaje integral ...................................... 10
Criterios para lograr procesos efectivos de enseñanza/aprendizaje 11
Criterios para la ejecución de procesos de facilitación que fortalezcan las capacidades ................................................. 12

Módulo II. El clima y el cambio climático
¿Cómo se produce el clima? ...................................................... 14
Herramientas para monitorear el clima .................................. 16
Variables que se usan para medir el clima............................... 17
La zona de convergencia intertropical .................................. 20
El Niño y La Niña ..................................................................... 21
El cambio climático y la variabilidad climática ....................... 25
Cambios climáticos esperados en Guatemala ....................... 29

Módulo III. La dinámica del clima, el cambio climático y el paisaje y su influencia en el cafetal
El microclima del cafetal ......................................................... 34
¿Cómo está afectando el cambio climático a nuestros cafetales? 35

Módulo IV. ¿Qué se está haciendo para enfrentar el cambio y la variabilidad climática en el café?
Perspectiva climática estacional en Centroamérica ............... 42
Sistemas de alerta temprana .................................................. 43
Sistema de monitoreo y vigilancia de la roya ......................... 44
Módulo V. Elementos que hay que considerar para evaluar la vulnerabilidad al cambio climático

Definición de vulnerabilidad .............................................. 48
Vulnerabilidad al cambio climático ..................................... 49
Capacidad adaptativa ante el cambio climático ..................... 50
Resiliencia al cambio climático .......................................... 51

Módulo VI. Herramientas para medir la vulnerabilidad en cafetales

Evaluación participativa de la vulnerabilidad y adaptabilidad al cambio climático en unidades productiva ............................................. 56

Módulo VII. Buenas prácticas para la adaptación al cambio climático

Acciones que contribuyen a reducir la vulnerabilidad .............. 68
Almácigos y siembra del café ............................................. 69
Fertilización y enmiendas .................................................... 71
Estructuras para la conservación de suelos ......................... 73
Cosecha de agua .............................................................. 76
Manejo de la sombra .......................................................... 78
Densidad de sombra y nutrición del cafetal ......................... 80
Manejo de arvenses o hierbas ............................................. 82
Manejo integrado de plagas ............................................... 85
Manejo de la cuenca hidrográfica ....................................... 87
Otras acciones que contribuyen a reducir el riesgo climático en cafetales .............................................................. 90
Fortalecimiento de capacidades ........................................ 90
Prácticas que las organizaciones de productores de café pudieran adoptar para adaptarse al cambio y la variabilidad climática ....................... 91
Establecimiento de programas de gestión del riesgo ............. 92
Establecimiento de programas para mejorar la diversidad genética .............................................................. 93

Glosario ............................................................................ 95
Anexos ............................................................................ 98
Literatura consultada ......................................................... 104
Participantes en los talleres de validación del manual .......... 106
### Abreviaturas y siglas

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anacafé</td>
<td>Asociación Nacional del Café de Guatemala</td>
</tr>
<tr>
<td>CATIE</td>
<td>Centro Agronómico Tropical de Investigación y Enseñanza</td>
</tr>
<tr>
<td>Cedicafe</td>
<td>Centro de Investigaciones en Café de Anacafé</td>
</tr>
<tr>
<td>CIAT</td>
<td>Centro Internacional de Agricultura Tropical</td>
</tr>
<tr>
<td>CIRAD</td>
<td>Centro de Investigación de Francia</td>
</tr>
<tr>
<td>CMNUCC</td>
<td>Convención Marco de las Naciones Unidas sobre el Cambio Climático</td>
</tr>
<tr>
<td>Embrapa</td>
<td>Empresa Brasileira de Pesquisa Agropecuaria</td>
</tr>
<tr>
<td>FAO</td>
<td>Organización de las Naciones Unidas para la Alimentación</td>
</tr>
<tr>
<td>GEI</td>
<td>Gases con efecto invernadero</td>
</tr>
<tr>
<td>IICA</td>
<td>Instituto Interamericano de Cooperación para la Agricultura</td>
</tr>
<tr>
<td>Insivumeh</td>
<td>Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología de Guatemala</td>
</tr>
<tr>
<td>IPCC</td>
<td>Panel Intergubernamental de Expertos en Cambio Climático, siglas en inglés</td>
</tr>
<tr>
<td>OBSAN-R</td>
<td>Observatorio Regional de Seguridad Alimentaria y Nutricional</td>
</tr>
<tr>
<td>Presanca</td>
<td>Programa Regional de Seguridad Alimentaria y Nutricional para Centroamérica</td>
</tr>
<tr>
<td>Presisan</td>
<td>Programa Regional de Sistemas de Información en Seguridad Alimentaria y Nutricional</td>
</tr>
<tr>
<td>Promecafé</td>
<td>Programa Cooperativo para el Desarrollo Tecnológico y la Modernización de la Caficultura, Centroamérica, Panamá, República Dominicana y Jamaica</td>
</tr>
<tr>
<td>SICA</td>
<td>Sistema de Integración Centroamericana</td>
</tr>
<tr>
<td>UE</td>
<td>Unión Europea</td>
</tr>
<tr>
<td>USAID</td>
<td>Agencia de los Estados Unidos para el Desarrollo</td>
</tr>
<tr>
<td>TNC</td>
<td>The Nature Conservancy</td>
</tr>
<tr>
<td>ZCIT</td>
<td>Zona de Convergencia Intertropical</td>
</tr>
</tbody>
</table>
Presentación

Cada día son más evidentes los efectos del cambio climático en nuestro entorno, con lo que surgen nuevos retos en diferentes niveles, y la caficultura no es la excepción. Ante esta situación, las instituciones, los técnicos, los investigadores y las familias productoras debemos realizar acciones que contribuyan a la adaptación oportuna para disminuir los impactos negativos en nuestros cafetales y, por ende, en la economía y sostenibilidad de la familia.

Para adaptarnos a esta nueva condición es muy importante entender las causas e impactos del cambio climático en nuestra vida diaria y en todos los organismos que viven en los cafetales. Por ejemplo, ya se sabe que en las temporadas más secas, las poblaciones de insectos tendrán una tendencia a aumentar, mientras que en épocas lluviosas aumentarán las enfermedades causadas por hongos y bacterias. Veremos crecer poblaciones de insectos que no habíamos visto nunca antes en un cafetal. Por eso, debemos estar alertas y observar cada detalle para entender mejor el comportamiento de los organismos que viven en el cafetal. Solo así se podrán determinar los factores que nos pueden ayudar a prevenir la incidencia de plagas y enfermedades.

Todas las personas involucradas en la actividad cafetalera debemos estar conscientes de lo que está pasando, porque solo con la colaboración de todos podremos encontrar las soluciones más adecuadas. Ya en múltiples ocasiones se ha demostrado que las comunidades organizadas, los productores organizados, la colaboración estrecha entre el personal técnico y las familias productoras son fundamentales para enfrentar esta situación. Si se quiere enfrentar con éxito los problemas que se avecinan, se requerirá de un gran esfuerzo de las organizaciones locales e instituciones nacionales. Únicamente el trabajo conjunto nos ayudará a encontrar soluciones y a estar preparados para la incertidumbre.

Este manual técnico está diseñado como una herramienta de apoyo al personal técnico, para fortalecer las capacidades de las familias productoras de café, ante el enorme desafío que el cambio climático significa. Se espera que el manual contribuya a mejorar el entendimiento y aplicación de principios y conceptos básicos ligados al clima y al cambio climático y sus implicaciones para el cultivo de café en Guatemala; promover cambios a nivel de unidad productiva para reducir la vulnerabilidad de las familias cafetaleras y empoderar a los técnicos y productores con herramientas prácticas que les permitan evaluar la vulnerabilidad de los sistemas cafetaleros.

El manual está conformado por siete módulos secuenciales cuyo contenido se fundamenta en las principales necesidades de información, identificadas por el personal técnico y las familias productoras. En estos módulos se ofrecen elementos y orientaciones sobre cómo construir procesos interactivos y participativos que fortalezcan la toma de decisiones, a partir de la realidad local para implementar acciones de adaptación y mitigación del sector cafetalero ante el cambio climático.
Módulo I.
El aprendizaje integral y su importancia
**Objetivos de aprendizaje**

- Reconocer la importancia que tiene el aprendizaje integral en procesos de capacitación
- Considerar criterios para ser efectivos en los procesos de enseñanza y aprendizaje para implementar acciones de mitigación y adaptación

**Importancia del aprendizaje integral**

Constantemente se ejecuta una cantidad de programas y proyectos que buscan promover el aprendizaje entre actores locales; sin embargo, muy pocas veces se plantea de manera clara lo que implica un aprendizaje integral que incluya los elementos necesarios para la superación de los desafíos vividos.

Aprender de manera integral implica mucho más que recibir y asimilar información. Para que un aprendizaje sea efectivo, debe darse a través de un proceso que posibilite el dominio de la interpretación y re-elaboración de principios e ideas; que contribuya con información necesaria para el dominio de habilidades, actitudes y conductas relacionadas con los temas a tratar.
Virginio Filho (2011) identificó algunas definiciones claves de lo que constituye el aprendizaje humano. Según diversos autores citados por Virginio Filho (2011), el aprendizaje es un proceso...

"... que se manifiesta por cambios adaptativos de la conducta del individuo mediado por la experiencia" (Thorpe 1956).

"... por el que se adquiere un cambio de conducta, conocimiento, habilidad y actitud" (Boyd et al. 1980).

"... que tiene lugar dentro del individuo y se infiere por cambios específicos en el comportamiento, los cuales poseen ciertas características determinantes" (Hall 1996).

"... organizativo el cual significa aprender junto con las comunidades locales y asegurar que los pobladores estén asumiendo el control de la situación" (Ward sf).

"... en el que la persona que aprende juega un papel activo al intervenir propositivamente en la planeación, realización y evaluación del proceso de aprendizaje" (Moreno López 1997).

**Criterios para lograr procesos efectivos de enseñanza/aprendizaje**

El aprendizaje integral se fundamenta en tres dimensiones: conocimiento, habilidad y actitud personal y social. Estas dimensiones son determinantes, tanto para facilitar y generar aprendizaje verdadero, como para garantizar resultados con impacto positivo en la superación de desafíos. La aplicación de un aprendizaje integral y contextualizado a la realidad local es fundamental en la ejecución de acciones de adaptación y mitigación, que logren generar un verdadero impacto. A continuación se detallan los criterios de referencia para cada una de estas dimensiones:

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>Criterios de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Conocimiento</strong></td>
<td>Entender y recordar hechos y conceptos, ideas y principios</td>
</tr>
<tr>
<td></td>
<td>Analizar datos e informaciones</td>
</tr>
<tr>
<td></td>
<td>Comprender métodos, herramientas, contenidos</td>
</tr>
<tr>
<td></td>
<td>Reprocesar y/o generar nuevas ideas</td>
</tr>
<tr>
<td></td>
<td>Saber sobre un tema o temas específicos</td>
</tr>
<tr>
<td><strong>Habilidad</strong></td>
<td>Destrezas para aplicar conocimientos</td>
</tr>
<tr>
<td></td>
<td>Precisión, rapidez con que se ejecuta alguna acción o práctica</td>
</tr>
<tr>
<td></td>
<td>Coordinación motora eficiente para expresar y ejecutar movimientos</td>
</tr>
<tr>
<td><strong>Actitud personal y social</strong></td>
<td>Nivel de compromiso y determinación para realizar acciones</td>
</tr>
<tr>
<td></td>
<td>Disposición para resolver conflictos y encontrar soluciones a problemas específicos</td>
</tr>
<tr>
<td></td>
<td>Valores éticos y buen ejemplo</td>
</tr>
<tr>
<td></td>
<td>Motivación</td>
</tr>
<tr>
<td></td>
<td>Compromiso y transparencia</td>
</tr>
</tbody>
</table>
Criterios para la ejecución de procesos de facilitación que fortalezcan las capacidades

Para facilitar procesos de fortalecimiento de capacidades debemos tener presentes algunos criterios de referencia que sirvan como guía para la planificación, ejecución y monitoreo de capacitaciones y asistencia técnica. Los criterios que a continuación se mencionan son determinantes para el éxito de las acciones de capacitación.

- Tomar en cuenta los intereses de los grupos involucrados (productores, trabajadores, adultos, jóvenes, mujeres, hombres).
- Tener presente que los adultos y los jóvenes aprenden de manera diferente.
- Mantener un vínculo permanente entre teoría y práctica.
- Dar seguimiento y observar los resultados alcanzados con la aplicación de conceptos teóricos llevados a la práctica, y relacionarlos con la experiencia de las familias productoras.
- Rescatar las experiencias y aportes de los participantes y de quienes brindan asistencia técnica.
- Usar técnicas y dinámicas grupales y participativas.
- Planificar interactivamente el currículo de capacitación y asistencia técnica y adecuarlo a lo largo de los procesos desarrollados.
- Realizar procesos horizontales y participativos de monitoreo y evaluación de las actividades de enseñanza-aprendizaje. Por un lado, se deben mejorar los procesos y, por otro, fortalecer los aprendizajes generados.
Módulo II.
El clima y el cambio climático
¿Cómo se produce el clima?

El clima es el resultado del impacto de los rayos del sol sobre los tres elementos que forman nuestro planeta: la atmósfera (el aire), el mar (el agua) y la tierra (rocas y suelo). Cada uno (agua, tierra y aire) recibe la energía del sol (el calor) y la absorben de forma diferente. El agua es la que más retiene el calor, luego la tierra y por último la atmósfera. Las diferencias de temperatura entre los tres elementos hace que el aire y el agua circulen; así se crean las corrientes atmosféricas y las corrientes marinas que determinan el clima.

Otro aspecto importante que define el clima es el grado de inclinación del planeta, la cual crea otra gradiente de temperatura. En los trópicos nos llega el sol más directamente y, por lo tanto, nuestro clima es más caliente. A mayor lejanía del ecuador, al norte o al sur, el calor es menor en diferentes épocas del año. Esto también contribuye a determinar el movimiento de las masas de aire y agua en el planeta (Fig. 1).

**Fig. 1.** La radiación solar sobre el agua, la tierra y la atmósfera, a diferentes latitudes, crea gradientes de temperatura que definen el movimiento de las corrientes atmosféricas y marinas y, por lo tanto, el clima del planeta.
El clima del planeta: desde Galicia hasta Cobán

Don Galiano es un viejo pescador que vive con su esposa en un pequeño pueblo de Galicia, en España. Hoy, desde temprano, se alista para salir de pesca. Como muchas otras mañanas, desde la puerta de la cocina observa el mar y las nubes y se rasca la cabeza. No está decidido si será un buen día para pescar. Su esposa Nuria entra a la cocina y le dice,

—En estos días no habrá mucho pescado en el mar…

Él se queda sorprendido, la mira con incredulidad y le pregunta,

—¿Y tú cómo lo sabes?

Mientras lava las hierbas que recogió en el patio para echarle al guiso, ella le explica que su amiga María, la de Cobán, a quien conoció en los talleres con mujeres que hicieron en Guatemala, le contó que los días por allá han estado muy fríos.

—Como tu bien sabes, continuó Nuria, los peces llegan a Galicia por una corriente de agua más caliente que sale de Guatemala, sube hasta Noruega y se trae los peces del norte. Como en Guatemala ha estado muy frío, la corriente no es muy fuerte y, entonces, no habrá muchos peces que pescar en estos días…

Don Galiano se queda mirándola perplejo, ¿cómo lo que pasa en Guatemala va a afectar la pesca de Galicia? Está a punto de echarse a reír por las ocurrencias de su esposa, pero la mirada fulminante de Nuria le hace guardar su risa para un mejor momento.

—Sí, le dice Nuria, en el curso de Guatemala nos explicaron que el clima en un lado del mundo afecta lo que pasa en el otro lado. Los peces de Galicia los trae la corriente que viene del Golfo de México así se llama, aunque en realidad viene de más abajo, por Guatemala sube hasta el norte y al bajar calienta a Bélgica, Inglaterra y ¡ja Galicia también! Por eso el invierno en Bélgica es menos frío que en los Estados Unidos, aunque están a la misma altura. Y, por eso, ¡nosotros tenemos más peces que los vascos! ¡Claro!, y por la misericordia de la Virgencita de la Nieves, terminó Nuria, santiguándose.

—Nuria, yo he sido pescador toda la vida, ¡me vas a decir a mí que no importa si aquí está nublado o lloviendo; que solo importa lo que pasa en Guatemala, al otro lado del mundo! ¡Mujer por Dios, las cosas que se te ocurren!

Ella, con la paciencia que le han dado los años, le contesta,

—Pues claro que también importa lo que aquí pase. Pero en esos talleres nos lo explicaron: el clima del planeta es uno solo. Si importa lo que pasa aquí, pero también lo que pasa en otros lados. Como te digo, lo que pasa en Guatemala nos puede afectar a nosotros y al revés también. Pero no me hagas caso, anda a pescar y cuando vuelvas hablamos.

Y por supuesto, Galiano se fue a pescar como siempre, sin hacer caso a su mujer. Pero pasó pensando en los frentes fríos que vienen del polo norte y en los aires calientes y secos que dicen que vienen del desierto del Sahara, y como todo afecta a la pesca. Tal vez su mujer tenía razón…

Ese día la pesca estuvo malita. Claro, ni se lo mencionó a su esposa al llegar a casa. Pero a partir de ese día, cuando en el noticiero presentaban el clima de Guatemala, don Galiano empezó a poner mucha atención… por si acaso su vieja tenga la razón…

Moraleja: Cuando su esposa le hable del clima, póngale mucha atención. (;-)


Herramientas para monitorear el clima

Los climatólogos o meteorólogos utilizan estaciones climáticas que permiten medir diferentes variables. La cantidad de lluvia se mide con un pluviómetro, la velocidad del viento con un anemómetro, la dirección del viento con la veleta, la humedad con el higrómetro o psicrómetro y la temperatura con un termómetro (Fig. 3). El heliógrafo se usa para calcular la duración del brillo solar.

Guatemala cuenta con estaciones meteorológicas de este tipo en todo el país. Es conveniente que cada técnico sepa cuál es la estación meteorológica más cercana a la región donde trabaja, y que pueda revisar periódicamente los datos que ofrece.
Variables que se usan para medir el clima

En el Cuadro 1 se presenta un listado de las variables climáticas que se miden regularmente y su importancia para el cultivo del café.

**Cuadro 1. Variables climáticas de medición regular y su importancia para el café**

<table>
<thead>
<tr>
<th>Variable</th>
<th>¿Qué es y cómo se mide?</th>
<th>¿Por qué es importante para el café?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura del aire</td>
<td>Es un indicador de la cantidad de energía calórica que hay en el aire. Normalmente se mide con un termómetro y se reporta en grados Celsius (°C).</td>
<td>El rango de temperatura óptima para el café Caturra oscila entre 18 y 25°C. Si la temperatura sube, baja la calidad. También las enfermedades tienen rangos de temperatura óptima. Por ejemplo, el rango para la infección de roya es de 21-26°C; con temperaturas mayores o menores, la enfermedad permanece en estado de latencia.</td>
</tr>
<tr>
<td>Humedad relativa</td>
<td>Se refiere a la cantidad porcentual de vapor de agua en el aire. La cantidad máxima de vapor de agua que podría haber en el aire es un 100%. Los desiertos, por ejemplo, normalmente tienen una humedad relativa del 20%, que es bastante seco.</td>
<td>La humedad relativa es especialmente importante porque entre más alta, más fácilmente se desarrollan hongos en las hojas. La humedad también afecta la apertura de los estomas de las plantas. Cuando los estomas se abren hay más regulación de la temperatura de la planta y una mayor fotosíntesis; esto garantiza el flujo de nutrientes a las partes más altas de la planta, por medio del agua.</td>
</tr>
</tbody>
</table>
**Presión atmosférica**

Es el peso del aire en una superficie determinada, medido en atmósferas. Si se mide la presión del aire a la orilla del mar, en la latitud 0° (el ecuador), el peso del aire es de una atmósfera, que equivale más o menos a 1013 mb (mbares) o hectopascales (hPa). En el sistema métrico decimal ha ido desapareciendo el uso de los mbares, pero todavía muchos servicios meteorológicos reportan los mapas de las corrientes atmosféricas en esta unidad.

Las diferencias en la presión atmosférica es lo que genera los vientos. Vientos extremos puede generar caída de flores y frutos. Los vientos también inciden en la cantidad de precipitación que pueda caer sobre un cafetal a como puede haber un exceso de precipitación como un déficit en la precipitación generando impactos importantes en la planta y en la dinámica de plagas y enfermedades.

---

**Los sistemas de presión en la atmósfera**

Cualquier gas, al calentarse, se expande y pesa menos. Un ejemplo son los globos aerostáticos: el aire pierde densidad al calentarse dentro del globo y, por lo tanto, el globo puede flotar aunque lleve varias personas en la canasta.

---

En los trópicos y en las zonas bajas, tanto el suelo como el agua de lagos y mares se calientan, con lo que se calienta también el aire circundante. Este aire caliente constituye un **sistema de baja presión**, porque ejerce muy poca presión sobre el suelo.

En cambio, cuando el aire se enfría se vuelve más denso, más compacto y pesa más, lo que crea un **sistema de alta presión**. Un ejemplo es la neblina que a veces vemos en la superficie de los ríos en las mañanas frías. Como el aire está muy frío, pesa más y entonces baja, ejerciendo una mayor presión sobre la superficie.
En un sistema de baja presión, el aire sube llevando el vapor de agua, que al llegar a la parte superior de la atmósfera se enfriá y se condensa, con lo que se forman las nubes. Si la condensación es muy fuerte, se forma un ciclón o borrasca que causa lluvias y tormentas.

Por otro lado, en un sistema de baja presión, el aire frío más pesado tiende a bajar. Esto se llama un anticiclón.

Al subir el aire caliente, deja un vacío que debe ser llenado; el aire frío que baja, tiende a ocupar ese vacío, con lo que se produce el viento. Se puede decir que el viento es aire que se mueve de un sistema de alta presión a un sistema de baja presión.

**Fig. 5.** Los vientos pasan de un sistema de alta presión (vientos fríos) a un sistema de baja presión (caliente), de manera que se alimentan uno al otro. Al subir el aire cargado de agua en un sistema baja presión se forman las nubes (borrasca).

**Fig. 6.** Mapa climatológico que muestra los sistemas de alta y baja presión y las isobaras o líneas con igual presión atmosférica.
La zona de convergencia intertropical

Puesto que los vientos siempre se desplazan de zonas más frías (A) a zonas más calientes (B), en el trópico se da una confluencia (se juntan) de los vientos alisios del norte con los del sur (Fig. 7).

Al unirse los vientos alisios del norte con los del sur en el ecuador, se forma una faja de vientos llamada la zona de convergencia intertropical (ZCIT). Esta faja de vientos calientes tiende a subir y formar nubes y traer lluvia.

![Diagrama de la zona de convergencia intertropical](image)

**Fig. 7.** Zona de convergencia intertropical donde se juntan los vientos alisios del norte y del sur y se forma una capa de nubes en el trópico. Según la época del año, la ZCIT se mueve más al norte o más al sur.

Como la tierra va dando vueltas sobre su eje alrededor del sol, no siempre la zona de más calor del planeta está en el ecuador. El sol calienta más el hemisferio sur en los meses de diciembre, enero y febrero, por lo que la ZCIT está por el hemisferio sur. En los meses de julio, agosto y septiembre, la ZCIT empieza subir hacia el norte, lo que trae las lluvias a la costa pacífica de Centroamérica y los monzones a Asia (Fig. 8).
El Niño y La Niña

En condiciones normales, los pescadores de Perú encuentran abundantes peces que llegan con las corrientes frías de Humboldt, procedentes de los mares del sur. Estas aguas frías crean una corriente fría que se mueve hacia Australia y Nueva Guinea, empujadas por los vientos alisios. En los alrededores de Australia e Indonesia –una zona donde normalmente llueve mucho (Fig. 9), con el calor se forma un sistema de baja presión que sube, llevando el vapor de agua para formar nubes.

Fig. 8. Movimiento de la zona de convergencia intertropical en los diferentes meses del año. La ZCIT trae lluvias a Centroamérica en los meses de julio a septiembre.

Fig. 9. El sistema de circulación del viento y corrientes de agua entre América y Australia a la altura del ecuador (en condiciones normales).
El Niño o la oscilación del sur

Cada dos a siete años, los mares del sur sufren un proceso de calentamiento que hace que disminuya la cantidad de peces en el mar peruano. Este cambio coincidía con la Navidad, por lo que lo llamaron el fenómeno de El Niño, en alusión al nacimiento de Jesús. Lo que ocurre es que la dirección de los vientos cambia y las aguas calientes de Australia se vienen hacia América, trayendo lluvias a la región de Suramérica (Fig. 10). Con el cambio climático, se teme que aumentará la frecuencia de aparición de El Niño.

En Suramérica, El Niño trae lluvias, así como en el Caribe; en cambio, trae fuertes sequías a la costa del Pacífico (Fig. 11).

Ciclo “El Niño”

**Fig. 10.** Movimiento de los vientos durante un episodio de El Niño, cuando los vientos cambian de dirección y traen aire caliente y lluvia hacia América.
La Niña

La Niña suele darse luego de El Niño. Este fenómeno representa una vuelta a la normalidad, pero con más fuerza; o sea que vuelve a llover donde hubo sequía, pero hay más lluvias de lo normal (Fig. 12). Los vientos predominantes durante La Niña son los vientos alisios, por lo que habrá más viento y lluvia en la región central y pacífica de América Central.

La Niña

La Niña se parece a las condiciones normales, ya que el agua fría del sur sube hacia el ecuador y empuja el agua caliente hacia Indonesia y Australia, donde aumenta la incidencia de lluvias. Sin embargo, al subir normalmente la ZCIT, aumentan las precipitaciones en la región centroamericana.
Impacto de El Niño y La Niña en la producción de café en Guatemala en el 2009-2010

No todas las zonas cafetaleras de Guatemala sufren de la misma forma con la aparición de El Niño o La Niña (Anacafé 2015). Mientras que en unas zonas la presencia de El Niño mejoró las cosechas hasta en un 24% (San Marcos), en otras zonas la cosecha se redujo en un 22% (Fig. 13). Con La Niña, la cosecha se redujo en un 23% en San Marcos y Quetzaltenango (Fig. 14).

Es importante continuar monitoreando el impacto de El Niño y La Niña en la producción de café, así como en otros cultivos, y estar preparados para enfrentar las situaciones adversas, especialmente si la frecuencia de estos eventos aumenta.

Fig. 13. Impacto de El Niño en las cosechas de café (2009-2010 y 2010-2011) en diferentes regiones de Guatemala
Fuente: Anacafé (enero 2015)
El cambio climático y la variabilidad climática

Cuando los climatólogos hablan del clima, se refieren a datos promedio de muchos años. El último mapa de lluvias de Guatemala, publicado por el Insivumeh, representa el promedio de 53 años de mediciones de la lluvia (desde 1960 hasta el 2013) (Fig. 15).

La Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC), en su Artículo 1, define el cambio climático como un cambio del clima atribuido directa o indirectamente a la actividad humana, el cual altera la composición de la atmósfera mundial y que se suma a la variabilidad natural del clima, observada durante periodos de tiempo comparables.

El clima es el resultado del promedio de los datos climáticos generados en un periodo de tiempo de al menos 30 años. Es decir, el clima no cambia solo porque en un año haya llovido mucho o haya hecho bastante calor, sino que hay que ver los cambios promedios que se hayan dado a lo largo de muchos años.

Según el Decreto 7-2013 del Congreso de la República de Guatemala, se entiende por variabilidad climática, las variaciones en las condiciones climáticas medias del clima, en el tiempo (días, meses, años) y en el espacio (regiones, zonas, comunidades) y que se extienden más allá de un fenómeno meteorológico en particular. O sea que la variabilidad climática es cómo varía la media o el promedio del clima.
Por ejemplo, si afirmamos que en la Ciudad de Guatemala llueve 1257 mm en el año, este representa un valor promedio de la lluvia de todos los días del año. La recopilación a lo largo de 30 años representa el clima, pero la cantidad de lluvia que cae cada día es variable y eso representa la variabilidad climática.

**Fig. 15.** Mapa de lluvia promedio anual en Guatemala para el período 1960-2013
Fuente: Insivumeh

**Fig. 16.** Precipitación (mm) y temperatura (°C) para la ciudad de Guatemala (promedio mensual de 30 años)
Entonces, la diferencia entre el cambio climático y la variabilidad climática es el tiempo con el que ocurren las anormalidades del clima. Con el cambio climático, los cambios ocurren en el largo plazo (por lo general décadas) y con la variabilidad climática ocurren en periodos menores a un año.

**Las causas del cambio climático**

La atmósfera está compuesta de muchos gases. Los más abundantes son el nitrógeno (78%) y el oxígeno (21%), aunque también hay cantidades muy pequeñas de otros gases como el argón y el dióxido de carbono (0,03%). La atmósfera refleja el 30% de la radiación solar, lo que permite tener temperaturas adecuadas para la vida en la tierra. En la luna, por ejemplo, puesto que no hay atmósfera, las temperaturas varían entre 123°C (diurna) y -153°C (nocturna). O sea que si fuéramos a vivir allí, nos derretiríamos de calor o moriríamos congelados. La vida como la conocemos no es posible sin la atmósfera.

Hace millones de años, la atmósfera tenía mucho más dióxido de carbono (CO$_2$), pero conforme crecían las plantas, atrapaban el carbono en su follaje, troncos y raíces, y como en ese tiempo había tantos terremotos y heladas, esos bosques a veces quedaban enterrados enteros. A través del tiempo, toneladas de carbono se fueron acumulando en el suelo y, luego de miles de años, ese carbono se convirtió en petróleo.

El petróleo no es más que largas, larguísimas cadenas de carbono que al romperse producen energía. En el siglo XX, el petróleo se convirtió en el combustible esencial para la sociedad. Sin entender que esto tendría consecuencias sobre la atmósfera, empezamos a quemar petróleo por todo el planeta, lo que ha generado grandes cantidades de CO$_2$ que han vuelto a la atmósfera (Fig. 17).

![Fig. 17. Incremento en la emisión de CO$_2$ por el uso de combustibles a base de petróleo; así aparece el efecto invernadero de la atmósfera. Fuente: Soto y Descamps (2012)](image-url)
Este aumento en el contenido de CO₂ en el aire ha ido creando una especie de nubes diminutas que atrapan el calor del sol, con lo que aumenta la temperatura de la atmósfera. Esto es lo que se conoce como el efecto invernadero; los gases que producen este efecto se conocen como gases con efecto invernadero (GEI).

No solo el CO₂ es un GEI; hay otros gases cuyo contenido en la atmósfera también está aumentando; entre ellos, el metano (CH₄) y el óxido nitroso (N₂O). La agricultura es, en parte, responsable del aumento de estos dos gases; en buena medida, el aumento en el contenido de metano se debe a la ganadería (Fig. 18) y al uso de fertilizantes nitrogenados el aumento de óxido nitroso.

![Fig. 18. Incremento en el contenido de dióxido de carbono y de metano en los últimos cien años.](image)

Los que trabajamos en agricultura debemos conocer muy bien cuáles prácticas que hacemos en la unidad productiva aumentan la concentración de estos gases; asimismo, debemos aprender a disminuir las emisiones (Cuadro 2).

### Cuadro 2. Gases con efecto invernadero liberados a la atmósfera por las prácticas agrícolas

<table>
<thead>
<tr>
<th>GEI</th>
<th>Fórmula química</th>
<th>¿Cuántas veces calienta más que el CO₂?</th>
<th>Principales fuentes agrícolas de emisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metano</td>
<td>CH₄</td>
<td>23 veces</td>
<td>Ganadería</td>
</tr>
<tr>
<td>Óxido nitroso</td>
<td>N₂O</td>
<td>300 veces</td>
<td>Fertilizantes nitrogenados sintéticos (urea, nitrato de amonio) y orgánicos (gallinaza)</td>
</tr>
<tr>
<td>Dióxido de carbono</td>
<td>CO₂</td>
<td>Unidad básica de medición</td>
<td>Electricidad y combustibles</td>
</tr>
</tbody>
</table>
Principales sectores que generan fuertes emisiones de GEI

Los gases con efecto invernadero pueden ser de distintos tipos y tener diversos orígenes. Hay gases que se producen en forma natural; por ejemplo, el CO$_2$ que exhalamos todos los animales, o el metano que exhalan las vacas y los pantanos. Otros GEI se producen en forma artificial, como los que emiten los carros o los aviones. El gran problema es que la concentración de GEI sigue creciendo día con día.

En la Fig. 19 se muestran los sectores o actividades que generan mayores cantidades de gases con efecto invernadero. Este dibujo nos pone a pensar dónde debemos actuar para tener un mayor impacto en la reducción de emisiones GEI.

**Fig. 19.** Emisiones planetarias de gases con efecto invernadero

Cambios climáticos esperados en Guatemala

En Guatemala ya se están viviendo los impactos del cambio climático. En el 2014, una prolongada canícula (con ausencia de lluvias por hasta 45 días) hizo que unas 236 000 familias perdieran parcial o totalmente sus cosechas de maíz y frijol y se quedaran sin reservas de alimentos para los próximos meses. El Gobierno estimó en 500 millones de quetzales el costo de la ayuda humanitaria requerida (Insivumeh).

En general, ya se observa un incremento en el número y la frecuencia de días cálidos consecutivos, una ligera disminución en el número de días fríos, un leve incremento de la precipitación total anual y de las precipitaciones extremas, y un cambio en la distribución temporal en la lluvia (Insivumeh).
Aunque en Centroamérica es difícil hacer una predicción de cómo será el clima, se han hecho muchos esfuerzos para generar información al respecto. Según predicciones de temperatura y lluvia hechas por el Insivumeh, entre el año 2030 y 2090 se tendrá un incremento en las temperaturas a nivel nacional y una tendencia a disminuir la cantidad total de lluvia (Fig. 20). Es para estos cambios climáticos que debemos prepararnos como caficultores y como ciudadanos, porque afectarán nuestros cafetales y nuestras vidas.

Fig. 20. Temperatura estimada y lluvia anual promedio para enero 2030 y 2090 para Guatemala
Fuente: Insivumeh.
Módulo III.
La dinámica del clima, el cambio climático y el paisaje y su influencia en el cafetal
El impacto del clima mundial en el cafetal depende de dónde se ubica la unidad productiva con respecto al paisaje. Un aumento en la temperatura de 2-3°C no afecta de igual manera a una unidad productiva ubicada a una altura de 700 msnm que a otra a 1500 msnm (Fig. 21). De hecho, un trabajo de investigación de Mario Chocooj sobre el comportamiento de la roya en Guatemala encontró que la altitud tiene un impacto directo en el desarrollo de la enfermedad junto a la variación del clima (Chocooj 2015). Y lo mismo se ha visto para la broca de café. Esto quiere decir, entonces, que el clima es importante, pero más importante es el el microclima presente en el cafetal.

**Fig. 21.** El impacto del clima dependerá del paisaje y el microclima del cafetal
Foto en Huehuetenango, cortesía de Anacafé.
Los factores que más afectan el clima localmente son la existencia de parches de bosque y su cercanía al cafetal y los cuerpos de agua, como lagos, ríos o el mar. Como ya sabemos, las aguas se calientan y enfrían más lentamente que la tierra; se dice que los océanos son reguladores térmicos porque suavizan las temperaturas, tanto las calientes como las frías. Lo mismo sucede con la presencia de bosques y su capacidad de condensar agua (Cuadro 3).

En los sistemas bióticos, como un cafetal, el impacto que vemos no es el resultado de un solo factor, sino de la combinación de varios factores. Entonces, si el clima es más caliente en el mundo, va a afectar de diferentes formas a un cafetal con sombra que a otro sin sombra, o a un cafetal que reciba sol en la mañana que al que tiene el sol en la tarde. El clima es importante, pero el paisaje y el microclima también son muy importantes.

**Cuadro 3. Impacto de los componentes del paisaje en el microclima del cafetal**

<table>
<thead>
<tr>
<th>Elemento del paisaje</th>
<th>Impacto sobre el clima</th>
<th>Impacto sobre el cafetal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentos de bosque</td>
<td>Amortiguan el cambio climático, regulan la temperatura y favorecen las lluvias. Estos son elementos fundamentales en un paisaje que contribuye a mantener servicios ecológicos que generan bienestar humano, por ejemplo el agua. Los bosques actúan como esponjas porque absorben el agua de lluvia pero por otro lado los bosques contribuyen a la condensación del agua. Debido a la transpiración, las hojas de los árboles son generalmente muy frescas y, al entrar en contacto con el aire húmedo, el frío de la hoja hace que el agua se condense.</td>
<td>Aunque la zona esté muy seca y caliente, cerca de los fragmentos de bosques los cafetales estarán más frescos y húmedos. Si hay una humedad relativa muy alta, es probable que cerca de los parches de bosque aumente la incidencia de enfermedades como el ojo de gallo.</td>
</tr>
<tr>
<td>Vegetación en general</td>
<td>Sirve de regulador de la temperatura. Hardwick et al (2014) encontraron que entre más área de hojas haya (índice de área foliar), la temperatura máxima es más baja, la temperatura del suelo es menor y la humedad relativa mínima es más alta.</td>
<td>Para mantener el cafetal fresco es bueno tener vegetación arbórea. Ojalá árboles siempreverdes que no pierdan las hojas en el verano, cuando más se necesitará bajar la temperatura. Los árboles pueden estar cerca y no necesariamente dentro del cafetal.</td>
</tr>
<tr>
<td>Fuentes de agua: lagos, ríos y quebradas</td>
<td>Todo cuerpo de agua funciona como amortiguador de la temperatura. Si hace mucho calor, el agua refresca el ambiente; si hace mucho frío, el agua calienta el ambiente.</td>
<td>Un cafetal que esté cerca de cuerpos de agua será más fresco. Si uno quisiera aprovechar el efecto de los cuerpos de agua sobre el cafetal, podría hacer corredores de vegetación entre los cuerpos de agua y el cafetal.</td>
</tr>
<tr>
<td>Cantidad de sol recibida</td>
<td>En general, en la región centroamericana llueve por las tardes; si el cafetal no recibe sol en las mañanas, puede que pasen días sin que le dé bien el sol. Esto ocurre en cafetales ubicados en laderas que ven hacia el oeste. Es posible que, hasta cierto punto, estos cafetales se vean favorecidos por El Niño.</td>
<td>El café es muy sensible a la luz. Mucho sol mejora la productividad pero le acorta la vida a la planta. Se sabe que las horas en las que la planta de café está más activa son las primeras horas de la mañana. Los cafetales que dan hacia el oeste deben utilizar menos sombra, para aprovechar mejor el sol de la tarde.</td>
</tr>
</tbody>
</table>
El microclima del cafetal

¿Qué es el microclima?

El microclima es el conjunto de condiciones climáticas que se dan a nivel local y que lo hacen diferente del clima de la zona o del municipio. El microclima se debe a condiciones locales que modifican el clima; por ejemplo, debajo de un árbol frondoso, el microclima es más fresco y protegido que en un camino de piedra o en un potrero. También sabemos que los cerros siempre tienen un lado en donde pega más sol, o más viento, o llueve más. Estos son ejemplos de microclima.

Es poco lo que un productor de café puede hacer para cambiar el clima mundial, pero sí puede mejorar el microclima de su cafetal.

¿Qué es el microclima del cafetal?

En una misma región puede haber varios microclimas. Digamos que mi unidad productiva está en la parte más alta de un cerro y del lado en donde pega el sol de la tarde. Estos factores hacen que el microclima de mi cafetal sea de una forma particular. Obviamente no puedo subir o bajar la unidad productiva de la montaña, o cambiarla de lado, pero sí hay otros factores del microclima que puedo cambiar.

Por ejemplo…

- Ya sé que los cuerpos de agua (ríos, quebradas, lagos, lagunas) suavizan el efecto del clima; entonces, si dejo árboles en las orillas de los cuerpos de agua, su impacto benéfico sobre el cafetal será mayor.
- Puedo sembrar barreras rompevientos para amortiguar el golpe de los vientos al cafetal
- Los árboles en el cafetal ayudan a bajar las temperaturas; sin embargo, hay que tener en cuenta que no todos los árboles refrescan de la misma forma.

En un estudio en Indonesia, Hairiah et al. (2014) midieron la temperatura en un bosque al lado de un cafetal y en el cafetal mismo. Encontraron que en el bosque la temperatura era de 20 a 22°C, mientras que en el cafetal a pleno sol llegaba hasta 29°C. La temperatura ideal para el crecimiento del café caturra es de 21 a 26°C; una temperatura más alta puede afectar el rendimiento del café.

La diferencia de temperatura entre el cafetal con sombra y al sol también puede afectar la germinación y sobrevivencia de esporas de hongos, como las de la roya (Fig. 22). Un estudio realizado en Turrialba, Costa Rica, encontró que la temperatura al sol del mediodía es tan alta que puede inhibir la germinación de las esporas de la roya, mientras que a la sombra, las temperaturas en días calurosos no llegaron a ser tan altas y se mantuvieron en el rango ideal para la germinación de las esporas de roya (López et al 2013). Pero, ¡atención!, esto no quiere decir que en los cafetales expuestos al sol la roya afecta menos; la incidencia de la roya depende de muchos otros factores, como la nutrición y la carga de cosecha, entre otros. Sin embargo, el ejemplo permite ilustrar que el microclima contribuye, o no, a la sobrevivencia de enfermedades como la roya o el ojo de gallo.
Epidemiología
Efecto de la sombra sobre el microclima

Variaciones diarias de la temperatura (°C) de la hoja función de la lluvia del día y de la sombra (época de lluvias, 2009)

¿Cómo está afectando el cambio climático a nuestros cafetales?

El cambio climático y la variabilidad climática están afectando la producción de café de muchas formas. En algunas zonas la lluvia ha aumentado mucho y, con el exceso de lluvia, aumenta también la incidencia de enfermedades. En otras zonas hay menos lluvia y, con la falta de agua, se reduce la tasa de crecimiento, las floraciones se ven afectadas y aumentan las plagas de insectos y artrópodos.

Hasta la fecha, se ha comprobado que los cambios varían de una zona a otra y que pueden variar incluso dentro de una misma zona. Se ha visto que después de una época seca larga puede empezar a llover sin parar. Por eso el productor debe estar alerta y conocer muy bien los problemas que el exceso o la falta de agua pudieran causar, así como las prácticas de manejo que le pudieran ayudar a enfrentarlos. Hoy más que nunca, el productor de café tiene que conocer a sus amigos y enemigos dentro del cafetal; saber qué le gusta a cada uno y cómo puede manejarlos.
Cuadro 4. Impacto del cambio climático en el cafetal

<table>
<thead>
<tr>
<th>Cambio climático</th>
<th>Plagas y enfermedades</th>
<th>Planta de café</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período seco</td>
<td>Favorece la aparición de escamas, chapulines, ácaros, etc. Hay menos hongos en la hoja. Si la sequía es muy fuerte se reducen las poblaciones de abejas, que son importantes para la polinización.</td>
<td>Se reduce la velocidad de crecimiento; las hojas nuevas crecen lentamente, el grano llena más despacio. Si la sequía es muy fuerte puede afectar la calidad del grano.</td>
</tr>
<tr>
<td>Mucho viento (normalmente en el período seco)</td>
<td>Si hay viento entre períodos lluviosos, o inclusive con una descarga pequeña pero constante de agua, se favorece la distribución de las esporas de los hongos.</td>
<td>Las plantas se resecan rápidamente y se puede afectar la floración. Aumenta la transpiración porque la hoja se seca rápidamente. Si en el cafetal hay banano, las plantas se dañan seriamente. Urgente poner barreras rompientes.</td>
</tr>
<tr>
<td>Período lluvioso</td>
<td>Favorece el desarrollo de hongos del follaje como el ojo de gallo, roya, phoma, etc. Favorece la aparición de controladores biológicos, como Beauveria sp. (controla broca), Lecanicidium sp. (controla roya), Trichoderma sp. (se alimenta de otros hongos y de materia orgánica).</td>
<td>Las lluvias son claves para la floración, pero luego se ocupa un período seco para que la flor no se caiga antes de ser polinizada y que inicie la formación del grano. Si el periodo lluvioso no coincide con las necesidades del café, se pudiera hasta perder la cosecha. Si hay exceso de lluvias durante la cosecha, el grano se cae. No obstante, en general la planta está mejor con agua que sin ella.</td>
</tr>
</tbody>
</table>

Impactos del cambio climático en el café de Guatemala

Como resultado de un convenio entre CIAT y Anacafé se formó un equipo de trabajo en Guatemala que desarrolló una serie de mapas para predecir cómo va a cambiar el clima y cómo van a ser afectadas las zonas cafetaleras (Laderach et al. 2012). Según este estudio, la precipitación anual va a disminuir (como ya se nota en el Corredor Seco). Las temperaturas máximas y mínimas mensuales se incrementarán moderadamente para el año 2020 y continuarán aumentando progresivamente hasta el año 2050. El clima en general se volverá más estacional, en términos de la variación a lo largo del año; en las zonas cafetaleras la temperatura aumentará en 1°C para el 2020 y 2°C en el 2050 y la precipitación anual se reducirá en 24 mm.

Esto podría ocasionar que las áreas de café migren hacia arriba en las montañas. Es probable que se reduzca la calidad de la taza final de café proveniente de las zonas cafetaleras actuales. Para compensar el aumento en la temperatura, las zonas óptimas para la producción de café que ahora están entre 700 a 1700 metros sobre el nivel del mar van a subir a 1200-2400 msnm.

La siguiente serie de mapas muestra la aptitud actual, en el 2020 y en el 2050. Las áreas que se verán más afectadas serán las cercanas a los 700 msnm, tales como la parte baja de Esquipulas y Suchitepéquez. Los autores sugieren que los productores busquen cultivos alternativos para sustituir el café. En las áreas más altas, como Antigua o Santa Rosa, los productores deberán adaptarse a las nuevas condiciones climáticas; deberán proteger los cafetales de las altas temperaturas con un mejor manejo de la sombra. En otras áreas, como Chimaltenango, será posible cultivar café en el futuro (Laderach et al. 2012).
Aunque estas predicciones fueron hechas para el 2020 o el 2050, los cambios en el clima se están dando más rápido de lo que habíamos esperado inicialmente. El 2015 se reportó como el año más caliente de la historia desde que se tienen registros en el mundo. Así es que cuanto antes tomemos previsiones, mejor. En las zonas donde probablemente no se podrá cultivar más café, sería bueno empezar a buscar cultivos sustitutos, tales como la naranja y otros cítricos.
A continuación se detallan otros impactos del cambio climático que pudieran afectar el cultivo del café.

- **Lluvias irregulares en prefloración:** fisiológicamente, la planta necesita un estrés para estimular la floración. Este estrés es el período de sequía. Pero con la variabilidad climática las lluvias no siguen el patrón acostumbrado, lo que está ocasionando floraciones dispersas en diferentes épocas del año. Esto lleva a que en la misma bandola, haya flores, granos apenas en formación, granos verdes y hasta granos maduros (Foto 1). El acceso al riego podría ayudar a homogenizar la floración.

- **Falta de lluvia después de la floración:** para el café, es muy importante el momento en el que falten las lluvias. Si las lluvias faltan después de la floración, es probable que haya malformación de las flores y quema de granos muy pequeños. Igualmente, si faltan las lluvias durante el llenado del grano, es probable que el grano no llene bien o que se den malformaciones. Si los granos llenan menos, pesan menos, por lo que el porcentaje de flotes en el beneficiado húmedo puede llegar a ser importante (Fotos 3 y 4). En casos de sequía extrema, se puede dar la caída total de las hojas y la muerte de la planta.
Impacto de la falta de lluvia en las plagas: en general, la mayoría de las plagas de insectos, ácaros, abejones (artrópodos) se ven favorecidas por el tiempo seco y la producción de follaje nuevo. Cuando la variabilidad climática es alta, con días de lluvia que favorecen el crecimiento de las plantas, seguidos por periodos secos, se incrementa la cantidad de "comedores de follaje" en los cafetales. Las poblaciones de artrópodos disminuyen con la llegada de las lluvias regulares, sin necesidad de aplicar ningún producto para controlarlos. Sin embargo, si pasan las semanas y las lluvias no llegan, podría ser necesario aplicar algún insecticida. Por eso es importante estar al tanto de las predicciones del clima.

Foto 3. Los granos no se llenan bien por la falta de agua; como resultado, pesan tan poco que se genera hasta un 85% de flotes. Fotos cortesía de Soares, de su presentación para "Coffee & Climate".

Foto 4. Con veranos muy secos y calientes se han tenido pérdidas de hasta un 10% en Brasil debido a la malformación del grano de café. Foto cortesía de P. Marraccini, Cirad-Embrapa.

Foto 5. Diferentes plagas de artrópodos e insectos observados durante en época seca en los cafetales
Fotos: G. Soto
**Impacto del exceso de lluvia en los hongos**: en Guatemala, la roya afectó seriamente en recientes cosechas. Según Promecafé, en el periodo 2012/2013, la roya afectó el 59,2% de área total sembrada de café (276 000 ha), en tanto que en el periodo 2013/2014 afectó el 70%, lo que denota un fuerte incremento de la enfermedad (documento sobre impacto de la roya sobre el café sin autor).

Cuadro 5. Efectos directos e indirectos de eventos climáticos inusuales en el cultivo del café

<table>
<thead>
<tr>
<th>Amenaza climática</th>
<th>Impacto directo en la planta</th>
<th>Impacto indirecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta temperatura</td>
<td>Maduración temprana del fruto, lo que hace que se dé una pérdida progresiva de calidad. Sobre los 25°C se reduce la tasa fotosintética. Sobre los 30°C se reduce el crecimiento de la planta. Anormalidades y aborto en hoja, tallo, flor.</td>
<td>Aumento en la incidencia de plagas y enfermedades.</td>
</tr>
<tr>
<td>Lluvias fuertes, granizo y fuertes vientos</td>
<td>Daño al árbol; se incrementa el aborto de frutos, especialmente cerca de la cosecha.</td>
<td>Erosión y deslizamientos de tierra, lavado de agroquímicos aplicados. Daños a los caminos e incremento de costos en otras infraestructuras.</td>
</tr>
<tr>
<td>Lluvias intermitentes y fuera de estación</td>
<td>Mayor frecuencia de floración.</td>
<td>Posible incremento de algunas enfermedades. Dificultades de secado en pos-cosecha</td>
</tr>
<tr>
<td>Lluvias prolongadas</td>
<td>Pérdida de la floración; afecta el desarrollo del fruto; baja fotosíntesis por la nubosidad continua.</td>
<td>Se favorece la aparición de algunas enfermedades; pudiera aumentar la mortalidad de algunas plagas insectiles, tales como la broca del café.</td>
</tr>
<tr>
<td>Sequías prolongadas</td>
<td>Árboles débiles, marchitez, pudiera aumentar la mortalidad de plantas jóvenes.</td>
<td>Las plantas estresadas son más susceptibles a algunas plagas.</td>
</tr>
</tbody>
</table>

Módulo IV.

¿Qué se está haciendo para enfrentar el cambio climático y la variabilidad climática en el café?
Perspectiva climática estacional en Centroamérica

En Centroamérica hay varias iniciativas que ya están trabajando para enfrentar el cambio climático. Ya se cuenta con estudios que demuestran que el istmo está siendo afectado por este fenómeno, y se prevé que será más fuerte en las próximas décadas si continúa la acumulación de gases de efecto invernadero. Como ya se mencionó, se ha observado también una incremento de los efectos de El Niño y La Niña en los últimos años y además, se ha observado que la periodicidad e intensidad con se presentan estos fenómenos es cada vez más frecuente.

La epidemia de roya del café que asoló la región en el 2012 despertó mucha preocupación porque la producción se redujo sustancialmente en Guatemala y Honduras. En estos países se perdió hasta el 30% de la producción; en consecuencia, se redujeron los ingresos de las familias productoras, así como la entrada de divisas. Muchas familias recolectoras de café dejaron de percibir ingresos debido a la baja producción (Avelino y Rivas 2013).

Cada tres meses, el Comité Regional de Recursos Hidráulicos del SICA organiza un Foro Regional del Clima para América Central. Este comité está integrado por representantes de los institutos de meteorología de los países de Centroamérica, República Dominicana y México, y es patrocinado por el Observatorio Regional de Seguridad Alimentaria y Nutricional (OBSAN-R), la Unión Europea (UE), el Programa Regional de Seguridad Alimentaria y Nutricional para Centroamérica (Presanca II) y el Programa Regional de Sistemas de Información en Seguridad Alimentaria y Nutricional (Presisan).

El Foro revisa y analiza las condiciones oceánicas y atmosféricas más recientes, los registros históricos de lluvia, las previsiones de los modelos globales y sus posibles implicaciones en los patrones de lluvia en la región centroamericana. Además, se evalúan los registros históricos y los análisis estadísticos aportados por cada uno de los servicios meteorológicos de la región.
Con la información recolectada, se genera un mapa regional que refleja las probabilidades de lluvia acumulada para el siguiente trimestre y se organizan discusiones a nivel de sectores para analizar las implicaciones de estos pronósticos de precipitación acumulada. Esta información es fundamental para realizar los ajustes necesarios que permitan adaptar las prácticas agrícolas que se deben realizar al cultivo de café, en función de las condiciones climáticas previstas y el estado de los cafetales para el período que corresponde. A manera de ejemplo: en las regiones donde se espera que se presenten condiciones de lluvia inferiores a lo normal, la poda de la sombra del café debe adaptarse a las condiciones de baja precipitación, mientras que en las zonas donde la precipitación estará dentro del rango normal, la práctica debe realizarse de forma normal. El mismo principio aplica para los aspectos relacionados con fertilización, poda del café, etc.

Las familias productoras deben tomar previsiones para responder a las condiciones de clima que vayan a prevalecer en la región. Por ejemplo, si el cafetal está en un terreno con pendiente, se deben realizar obras de conservación de suelos, limpieza de drenajes, para evitar posibles deslizamientos si se presentaran lluvias muy fuertes.

Los informes y boletines emitidos por el CRRH son una herramienta muy útil para que los productores y familias residentes en una comunidad se organicen y tomen previsiones para prevenir posibles desastres naturales.

**Sistemas de alerta temprana**

Los sistemas de alerta temprana (SAT) consisten en un conjunto de acciones que se realizan para mantener la vigilancia sobre un evento previsible que se pueda presentar en un momento determinado (Unesco et al. 2011).

Los eventos pueden ser de diferente índole, como inundaciones o deslizamientos de tierra, pero también pueden relacionarse con la producción agrícola. Por eso es necesario mantener un monitoreo de las condiciones de clima, manejo de cultivos y otras variables relacionadas con la producción agrícola, como la presencia de enfermedades y plagas.

Para establecer un SAT se debe definir un conjunto de procedimientos y hacer uso de instrumentos que permitan mantener un monitoreo (vigilancia) constante de los factores naturales (bióticos y abióticos) y antrópicos (humanos) que contribuyan a que se presente o no el evento (Unesco et al. 2011).

El SAT permite conocer con anticipación y con un alto grado de certeza en qué tiempo y espacio es probable que se desencadenen situaciones potencialmente peligrosas provocadas por amenazas o eventos de tipo natural, o por la actividad humana. A manera de ejemplo, los institutos meteorológicos de muchos países, entre ellos los centroamericanos, monitorean constantemente el clima en la temporada de tormentas tropicales para determinar en dónde es probable que se formen y darles seguimiento. Asimismo, de acuerdo con el desarrollo y trayectoria del evento, es posible predecir la ruta que tomará y si pudiera transformarse en huracán.
En los años 2012 y 2013 se presentó una fuerte epidemia de roya en Centroamérica. Esto hizo que se estableciera un SAT para prevenir epidemias en el cultivo y paliar los efectos socioeconómicos que sufren las familias productoras de café, así como todos aquellos que dependen de la actividad cafetalera. Este ha sido un esfuerzo conjunto del Programa Cooperativo Regional para el Desarrollo Tecnológico y Modernización de la Caficultura (Promecafé) y otras instituciones de investigación y desarrollo como CATIE, IICA, FAO, ARS-USDA, OIRSA y las instituciones nacionales encargadas del cultivo.

**Sistema de monitoreo y vigilancia de la roya**

En Guatemala, para atender el riesgo que la roya significa, se creó el Sistema Nacional de Monitoreo y Vigilancia de la Roya, coordinado por el Cedicafé de Anacafé (Fig. 25). Con la información generada, los investigadores del Cedicafé han desarrollado mapas para monitorear el grado de severidad de la enfermedad y la defoliación que ocasiona. Si se miran los mapas con atención, se nota que el lugar en donde el ataque de roya es más severo ha ido cambiando conforme cambia el clima. Para la medición realizada en diciembre 2014, la mayor severidad se encontraba en las zonas de Zacapa, algunas áreas de Santa Rosa y Jutiapa (Fig. 26). Para mayo 2015, ya iniciada la estación de lluvias, la mayor severidad se encontró en las zonas más lluviosas, como San Cristóbal y San Pedro Carcha (Fig. 27).

![Fig. 25. Ubicación de los sitios de monitoreo y vigilancia de la roya](image-url)

Fuente: Boletín Cedicafé-Anacafé, junio 2015.
También se han hecho esfuerzos por medir no solo la severidad de los ataques de la roya, sino también sus impactos en la defoliación de la planta; al fin y al cabo, este es tal vez el impacto más importante de la roya en el cafeto. Hay que tener presente, sin embargo, que la defoliación puede deberse a otras causas, como la sequía. En mayo 2015, aunque la incidencia de la enfermedad en el Corredor Seco del país era baja, la defoliación era significativa (Fig. 28).
Fig. 28. Grado de defoliación del cafeto observada a mayo 2015
Fuente: Boletín Cedicafé-Anacafé, julio 2015.
Módulo V.
Elementos que hay que considerar para evaluar la vulnerabilidad al cambio climático
Definición de vulnerabilidad

A veces conocer el origen de las palabras puede ayudar a entenderlas mejor. El término ‘vulnerabilidad’ viene del latín: “vulnus” que significa ‘herida’ y “abilis” que significa ‘habilidad’. O sea que se podría decir que en latín vulnerabilidad significa “la habilidad para ser herido”. Es la facilidad que tiene una persona, una comunidad, un cafetal para ser dañado. Un niño que juega con un cuchillo es más vulnerable a cortarse que un adulto.

Veamos unos ejemplos ilustrativos

Raquel y Julia viven en el mismo barrio. Anoche, las dos se despertaron asustadas por un terremoto. Las dos sintieron la fuerza del movimiento porque sus casas están a unos 50 metros una de la otra. La casa de Raquel está en el borde de un declive que da al río, mientras que la casa de Julia está en la zona más vieja y plana del camino. En la casa de Julia apenas se cayeron algunos adornos. A la casa de Raquel, en cambio, se le cayó una pared entera que fue a dar al río. Siendo el mismo terremoto para ambas, ¿cuál de las dos casa era la más vulnerable? Obviamente la casa de Raquel por estar a la orilla del río. Ante un mismo fenómeno (el terremoto), la casa más vulnerable tuvo más daños.

La comunidad en donde viven Julia y Raquel está bien organizada. Después del terremoto, se movilizaron rápidamente para limpiar los escombros de las calles y prestar ayuda a los más afectados. Además, el gobierno puso a disposición rápidamente los recursos necesarios para ayudar a los necesitados, reabrir caminos, reconstruir las casas. Una rápida capacidad de respuesta hace que un pueblo sea menos susceptible al daño que otro pueblo poco organizado y desatendido por las autoridades de gobierno. El daño causado por un fenómeno natural (terremoto, inundación, derrubio) siempre se dará, pero la comunidad organizada tendrá la capacidad de responder más rápidamente y el daño será menor. La capacidad organizativa hace que un pueblo sea menos vulnerable.

Objetivos de aprendizaje:

❚ Conocer qué es la vulnerabilidad al cambio climático y los factores que la determinan
❚ Conocer qué es capacidad adaptativa y resiliencia.
❚ Conocer experiencias prácticas de medición de la vulnerabilidad al cambio climático en el Altiplano Occidental de Guatemala.
Lo mismo sucede con el cafetal. Dos cafetales, uno a la par del otro, reciben la misma cantidad de lluvia, pero uno puede ser más vulnerable a la roya, o a la sequía, o a los fuertes vientos. O puede ser que ambos sean igualmente vulnerables, pero la situación económica de las dos familias propietarias no es igual. Una de las familias tiene solo café para vivir, mientras que la otra además del café tiene cardamomo, aguacate y pimienta. Esto hace que la economía familiar sea menos vulnerable a las condiciones.

**Vulnerabilidad al cambio climático**

El IPCC (Panel Intergubernamental de Expertos en Cambio Climático) definió en el 2001 la vulnerabilidad al cambio climático como el grado en el que un sistema (unidad productiva, familia, organización o comunidad) es capaz de afrontar los efectos adversos del cambio climático, incluyendo la variabilidad climática y los fenómenos extremos (como los huracanes). Según el IPCC (2001), la vulnerabilidad de un sistema frente al cambio climático debe considerar tres elementos: la exposición, la sensibilidad y la capacidad de adaptación. Si se quisiera expresar esta idea en términos matemáticos, tendríamos que:

\[
\text{Vulnerabilidad al cambio climático} = (\text{exposición} + \text{sensibilidad}) - \text{Capacidad de adaptación}
\]

La **exposición** es el factor climático que expone al sistema natural o antropógeno, en este caso al cafetal. Un ejemplo de un factor de exposición puede ser el aumento de la temperatura o el exceso o la precipitación.

La **sensibilidad** se refiere a qué tan sensible el sistema (el cafetal) al factor climático expuesto. Pueden haber factores que no se pueden cambiar que contribuyen en aumentar esta sensibilidad. Por ejemplo, la pendiente, el tipo de suelo, la ubicación del cafetal, entre otros. Si volvemos al ejemplo de las casas de Raquel y Julia, la exposición sería la ocurrencia del terremoto, la sensibilidad el tipo de construcción (materiales, calidades, terreno) y la **capacidad adaptativa** serían las medidas a implementar para reducir el posible impacto (reforzar paredes/construcción, capacidad de respuesta para responder a una emergencia, etc.). La vulnerabilidad se reduce cuando aumenta la capacidad adaptativa. Por eso es necesario implementar medidas de adaptación que contribuyan a reducir la vulnerabilidad al cambio climático.
El caso de los dos cafetales, uno al lado del otro, también nos puede ayudar a entender los términos. El cafetal de don Mario está en la parte alta del cerro y, además del café, tiene sembrados aguacate, plátano y banana. El de don Júnior está más abajo; se trata de un cafetal sin sombra donde usan mucho herbicida, por lo que no hay ni una hierba en el suelo, ni gavetas, ni nada. El café está sembrado hasta la orilla del río. Cuando vino un huracán que durante tres días azotó la zona, los dos productores tuvieron pérdidas, pero las de don Júnior fueron mayores.

La cantidad de lluvia que cayó fue la misma en los dos cafetales; o sea que la exposición fue igual. Sin embargo, en el cafetal de don Mario el agua bajó por las ramas y troncos; casi en ningún momento la lluvia golpeó directamente el suelo cubierto de hojarasca. En el cafetal de don Júnior, la lluvia cayó directamente e hizo unos zanjones de erosión. Y como la unidad productiva está a la orilla del río, partes del cafetal se fueron al río. ¡Pobre don Júnior!, su unidad productiva es más sensible a los huracanes y fenómenos extremos. Por otra parte, don Mario siempre ha sido abierto al cambio y a experimentar con nuevas ideas; de hecho, para sembrar los aguacates hasta había arrancado unas matas de café. Don Júnior, por su lado, dice que así le enseñó su papá y no quiere cambiar nada en su forma de manejar la unidad productiva. Don Mario tiene una mayor capacidad adaptativa ante el cambio climático. En estas condiciones, no es de extrañarse que la unidad productiva de don Júnior sea más vulnerable al cambio climático. Es importante resaltar que los factores de exposición y sensibilidad no se pueden cambiar pero sí podemos cambiar la capacidad adaptativa de un sistema. Si aumentamos su capacidad adaptativa automáticamente estamos reduciendo su vulnerabilidad frente al cambio climático.

**Capacidad adaptativa ante el cambio climático**

“No es la especie más fuerte la que sobrevive, ni la más inteligente, sino la que responde mejor al cambio.”

Charles Darwin

Según el IPCC (2007), la adaptación al cambio climático representa los ajustes que los sistemas naturales y humanos deben hacer en respuesta al cambio climático real o estimado, o sus efectos, para moderar el daño o aprovechar sus aspectos beneficiosos. O sea, es todo lo que podemos hacer en el cafetal, en la familia, en la comunidad o en la cooperativa para evitar que el impacto del cambio climático sea peor. Son todas aquellas prácticas que nos pueden ayudar a ser menos vulnerables.

Algunos pudieran preguntarse, pero ¿cómo nos adaptamos si no sabemos bien cómo va a cambiar el clima? Y allí está la clave: debemos estar listos para meses secos y meses con mucha lluvia; días muy calurosos y días fríos. Hay que adaptarse a la variabilidad climática; o sea, ¡debemos estar preparados para todo!  

¿Por qué el IPCC dice que el cambio climático también pudiera traer beneficios? Al cambiar el clima, cambian las condiciones de un lugar para los diferentes cultivos; es posible que un cultivo que antes no crecía en una zona, con las nuevas condiciones empiece a desarrollarse y producir
buenas cosechas, o que se logre sacar semillas de una planta que antes nunca daba semilla. Como muestran las figuras de Cedical-Anacafé en el Módulo 4, en algunas zonas es probable que aumente la cosecha de café con El Niño o con La Niña. En fin, hay que adaptarse para sacarle el mejor provecho a la variabilidad climática. Para estar preparados no solo se necesitan recursos económicos; también se requiere organización, observación, planificación y previsión (Cuadro 6).

**Cuadro 6.** Factores que contribuyen mejorar la capacidad adaptativa de un sistema al cambio climático.

<table>
<thead>
<tr>
<th>Conocimiento</th>
<th>Entender qué está pasando con el clima; averiguar qué se puede esperar; buscar la información necesaria; entender en qué medida me podrían afectar los cambios.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de planificación</td>
<td>Saber qué hacer; desarrollar la capacidad de planear para el futuro para ser menos vulnerable.</td>
</tr>
<tr>
<td>Recursos</td>
<td>Contar con recursos para hacer los cambios a tiempo. Estos recursos pueden ser económicos o de semillas por ejemplo, para sembrar nuevos cultivos.</td>
</tr>
<tr>
<td>Sociales</td>
<td>Coordinar con otras familias de la comunidad que estén dispuestas a hacer planes en conjunto, que nos protejan y beneficien a todos y nos ayuden a reducir la vulnerabilidad al cambio climático.</td>
</tr>
<tr>
<td>Naturales</td>
<td>Pensar en alternativas que nos ayude a sobrellevar mejor una sequía. Por ejemplo, proteger las fuentes de aguas y bosques alrededor.</td>
</tr>
<tr>
<td>Financieros</td>
<td>Buscar el apoyo financiero para implementar las medidas de adaptación. Esto puede ser a través de préstamos individuales, apoyo de las diferentes instituciones, entre otros.</td>
</tr>
</tbody>
</table>

¿Se les ocurren otros aspectos que pudieran ayudar a una familia, una organización de productores, al cafetal, para estar mejor preparados para adaptarse al cambio climático?

**Resiliencia al cambio climático**

Se entiende por resiliencia la capacidad de un sistema para recuperar su estado normal después de un fenómeno destructivo. La resiliencia es un término que se usa tanto en psicología como en ecología. En la psicología es la capacidad de un individuo para recuperarse después de una fuerte crisis en la vida; la capacidad de caer y volver a levantarse y seguir adelante. En ecología se refiere a un sistema que sigue existiendo y funcionando esencialmente de la misma manera, a pesar del estrés o alteraciones sufridas.

La resiliencia es diferente de la resistencia (Fig. 29): la resistencia es soportar los embates sin mayores consecuencias, en tanto que la resiliencia es cuando tales embates causan daños, pero el sistema logra reaccionar y seguir funcionando como antes.
Análisis de la vulnerabilidad al cambio climático en el Altiplano Occidental de Guatemala: estudio de caso

BIOTA y TNC lideraron un proyecto para analizar la vulnerabilidad al cambio y la variabilidad climática en el Altiplano Occidental de Guatemala. Se incluyeron los departamentos de Huehuetenango, Quiché, San Marcos, Quetzaltenango y Totonicapán, los cuales representan el 20% del área nacional de Guatemala. Se determinó la vulnerabilidad actual y la vulnerabilidad futura al año 2050.

Para ser este análisis, se utilizó la fórmula de vulnerabilidad propuesta por el IPCC:

Vulnerabilidad al cambio climático = (exposición + sensibilidad) – capacidad de adaptación

Para determinar la vulnerabilidad se estimaron los siguientes índices:

- El índice de exposición se calculó a partir de seis amenazas: heladas, sequías, deslizamientos, erosión, incendios forestales e inundaciones. Este índice se llamó el IACA (índice de amenazas climáticas actuales).
- El índice de sensibilidad se determinó a partir de dos factores: el índice de escasez hídrica y el índice de producción. Este índice se llamó el ISHPA (índice de sensibilidad hídrica y productiva actual).
- El índice de capacidad de adaptación se determinó a partir de dos índices: el índice de densidad de población y el índice de seguridad alimentaria y nutricional. Se consideró un posible déficit de granos básicos, pobreza extrema, analfabetismo en mujeres, saneamiento ambiental y precariedad de empleo.

Al final la fórmula quedó así:

Vulnerabilidad ante el cambio climático:
[Exposición (índice sintético de amenazas ambientales) + Sensibilidad (índice de sensibilidad hídrica + índice de sensibilidad productiva)] – Capacidad de adaptación (índice demográfico + índice de inseguridad alimentaria y nutricional + índice de servicios ecosistémicos)
La fórmula permitió determinar que los departamentos con muy alta amenaza a deslizamientos en la zona de estudio son San Marcos, en el 34,5% de sus municipios, principalmente al norte; Quiché, en el 33,3% de sus municipios y Totonicapán, en el 25% de sus municipios.

Con la información colectada en este estudio se construyeron mapas para cada una de las amenazas. En la Fig. 30 se muestran los municipios con mayor peligro de erosión.

Para medir el índice de sensibilidad del café se recopilaron datos en las regiones cafetaleras (Fig. 31). En algunas regiones la disminución de la precipitación favoreció la producción de café, mientras que en otras más bien la afectó. Con esta información se desarrolló un índice de sensibilidad para el cultivo del café. En la Fig. 32 se muestran las zonas más sensibles (en rojo); estas corresponden a los departamentos de San Marcos y Quetzaltenango y algunos municipios de Huehuetenango.
El estudio logró determinar que Totonicapán es el departamento del Altiplano Occidental de Guatemala con la mayor vulnerabilidad al cambio climático en el 100% de sus municipios; le sigue Quetzaltenango con el 54% de sus municipios, San Marcos con el 48%, Huehuetenango con el 41% y Quiché con el 38%. Esta información es de gran valor para las comunidades y los gobiernos, para priorizar las acciones que ayuden a prevenir los impactos del cambio climático en las familias y las comunidades.

Módulo VI.
Herramientas para medir la vulnerabilidad en cafetales
Evaluación participativa de la vulnerabilidad y adaptabilidad al cambio climático en unidades productivas cafetaleras

La evidencia científica muestra que la temperatura del planeta está aumentando por causas naturales y actividades humanas. Esto constituye un desafío a escala global ya que se están generando impactos relevantes en muchos ámbitos, en particular en las actividades agrícolas. Para el sector cafetalero, el cambio climático no hace sino agravar una situación ya de por sí difícil debido a factores productivos y ambientales, fluctuaciones de precios y altos costos de producción. Sin lugar a dudas, los sectores sociales de más escasos recursos son los que recibirán la mayor fuerza del impacto negativo.

Para entender el cambio climático y su vínculo con la producción cafetalera es necesario, de manera urgente, intensificar y ampliar el conocimiento de principios generales que orienten la evaluación de la vulnerabilidad en las unidades y sistemas de producción de café. Los esfuerzos de mitigación, entendida como “…las medidas que contribuyen a la reducción de los gases de efecto invernadero” y de adaptación, entendida como “…las medidas que posibilitan la convivencia con el cambio climático y ayudan a minimizar sus impactos negativos” (GTZ-Cafedirect 2010) requieren de herramientas prácticas que promuevan la discusión general entre técnicos y productores sobre el nivel de vulnerabilidad de las unidades productivas cafetaleras.

En el año 2010 se desarrolló una metodología práctica para que técnicos, promotores y familias productoras pudieran hacer evaluaciones participativas de la vulnerabilidad y capacidad adaptativa de unidades productivas y/o zonas cafetaleras al cambio climático. Esta metodología se publicó por primera vez en la revista Ambientico de la Universidad Nacional de Costa Rica (Melo 2011). A

Objetivos de aprendizaje:

- Entender la importancia del diagnóstico participativo con productores para determinar el nivel de vulnerabilidad al cambio climático.
- Identificar los factores que inciden en el nivel de riesgo del sector cafetalero.
- Conocer los pasos para implementar el diagnóstico participativo en el campo.
- Priorizar interactivamente junto con los productores, acciones de adaptación y mitigación para los temas críticos identificados con el diagnóstico.

Evaluación participativa de la vulnerabilidad y adaptabilidad al cambio climático en unidades productivas cafetaleras

En el año 2010 se desarrolló una metodología práctica para que técnicos, promotores y familias productoras pudieran hacer evaluaciones participativas de la vulnerabilidad y capacidad adaptativa de unidades productivas y/o zonas cafetaleras al cambio climático. Esta metodología se publicó por primera vez en la revista Ambientico de la Universidad Nacional de Costa Rica (Melo 2011). A
continuación presentamos ese enfoque metodológico actualizado y ampliado; se han hecho algunos ajustes identificados durante varias experiencias de aplicación de la metodología. En la promoción de acciones para determinar y reducir la vulnerabilidad en las unidades productivas cafetaleras se deben tener en cuenta los principios siguientes.

1. **El cambio climático tiene su origen en las actividades humanas.** La evidencia científica muestra que el cambio climático es producto principalmente de la intensa intervención humana en el planeta. El rápido y descontrolado crecimiento de la población, así como el tipo y escala de desarrollo económico, social e industrial están generando alteraciones climáticas a largo plazo debido al uso intensivo de combustibles fósiles y del cambio de la cobertura forestal.

2. **Es necesario aceptar la realidad del cambio climático.** Para generar un buen nivel de compromiso con la implementación de medidas de mitigación y adaptación debemos reconocer que el fenómeno climático es ya una realidad. Debemos informarnos, discutir y aclarar dudas, de manera que se promueva la motivación y el cambio de actitudes para lograr que se ejecuten las acciones requeridas.

3. **El cambio climático causa impactos locales y globales.** La variabilidad climática está generando fenómenos como el aumento de la temperatura del planeta, irregularidad y alteración en los patrones de lluvias, intensificación de vientos y huracanes. Todo ello causará impactos negativos en la producción agrícola debido al aumento del riesgo de erosión de los suelos, pérdida de la fertilidad, alteración de las floraciones, incidencia de plagas y enfermedades, caída de granos y debilitamiento de las plantas.

4. **El cambio climático es un fenómeno complejo.** Como lo indica Schepp (citada por GTZ-Cafedirect 2010), “la adaptación al cambio climático es un proceso muy complejo que necesita un aprendizaje continuo.”

5. **El cambio climático incrementa la incertidumbre.** La producción de café tradicionalmente se ha asociado con muchos desafíos que afectan a las familias productoras. El cambio climático intensifica las incertidumbres y, por lo tanto, es muy importante contar con estrategias para implementar medidas que contribuyan a la adaptación.

6. **Enfrentar el cambio climático es responsabilidad de todos.** Hacer frente al cambio climático requiere compromisos efectivos y permanentes de familias productoras, comunidades, organizaciones e instituciones, así como de los responsables de políticas públicas locales, nacionales e internacionales. En todos los ámbitos deben implementarse estrategias de mitigación y adaptación.

7. **El cambio climático también ofrece oportunidades.** Las medidas de mitigación y adaptación representan esfuerzos adicionales por parte de las familias productoras que, en definitiva, pueden contribuir a acelerar el camino hacia la sostenibilidad, mejorar la calidad de vida y la conservación de suelos, agua y biodiversidad. No adaptarse significa aumentar los riesgos de los efectos negativos del cambio climático.
Desarrollo del modelo

Durante los últimos 15 años, el CATIE, junto con diferentes instituciones colaboradoras, ha venido desarrollando estudios biofísicos y socioeconómicos que han permitido caracterizar los factores principales relacionados con la vulnerabilidad (exposición, sensibilidad/impacto) y capacidad adaptativa de la producción de café al cambio climático. Entre esos estudios destacan Baca et al. (2014), Baker y Haggar (2007), DeClerck y Martínez (2011), Haggar et al. (2011, 2013), Linne et al. (2010), López et al. (2012), Medina et al. (2006), Rossi et al. (2011), Payán et al. (2002), Rapidel et al. (2015), Salgado (2010), Virgínia Filho y Abarca (2008), Virgínia Filho et al. (2015). Luego de una revisión exhaustiva, se definieron e integraron en un solo formato los aspectos más relevantes: variabilidad climática, impactos de fenómenos climatológicos extremos, interacciones agroecológicas en la producción, diseño y manejo de sombra, fertilidad y manejo de suelos, intensidad de uso y dependencia de la fertilización química, manejo de tejido de café, plagas y enfermedades, nivel y estabilidad de la productividad, diversificación y manejo de la biodiversidad, capacitación y capacidad organizativa de los productores. Además, se elaboraron formatos específicos para el análisis de alternativas de adaptación/mitigación; estos formatos se presentan como listados de prácticas/medidas estudiadas y validadas en diferentes condiciones.

El formato desarrollado para la evaluación de la vulnerabilidad y la capacidad adaptativa, así como los formatos de medidas y prácticas para hacer frente a las limitaciones identificadas se basa en preguntas orientadoras, entrevistas con los productores y observaciones en campo (Cuadro 7). Los 25 ítems de formato del Cuadro 7 permiten identificar la categoría de vulnerabilidad y capacidad adaptativa (Cuadro 8). Las ocho categorías fueron agrupadas en cuatro niveles de colores; se utilizaron convenciones de uso común a partir de la degradación del rojo (limitación más seria), amarillo, naranja y verde (mayor beneficio). Para cada color se tienen dos categorías que permiten una mejor distribución de la escala de puntajes, la cual va de -25 (máximo puntaje negativo) hasta 25 (máximo puntaje positivo).

El modelo completo se sometió a una fase de validación inicial en Costa Rica; luego de los primeros ajustes fue validado en talleres y prácticas de campo en zonas cafetaleras de Nicaragua, Guatemala y Ecuador. Más recientemente, se han realizado talleres con expertos, técnicos y productores de Honduras y Guatemala, con el fin de actualizar las herramientas del modelo. La validación permitió verificar, de manera comparativa, cuáles de las unidades productivas que cumplen con las prácticas de adaptación presentan mayor resiliencia y capacidad de enfrentar los fenómenos vinculados con el cambio climático.

El enfoque metodológico

El enfoque metodológico propuesto integra temas asociados a la vulnerabilidad ante el cambio climático, con el fin de promover la reflexión y la acción en el sector cafetalero. El enfoque y formato metodológico buscan estimular a las familias productoras y al personal técnico de apoyo para que valoren de manera cualitativa un conjunto de 25 preguntas que permitirán determinar el nivel de vulnerabilidad y adaptabilidad de cada unidad productiva. Los temas a valorar se relacionan con
el comportamiento de la variabilidad climática en la zona y posibles consecuencias productivas y ambientales. Además, permiten determinar el estado del sistema de producción de café, así como su entorno, y su capacidad de reacción ante el cambio climático.

Este enfoque metodológico y sus herramientas participativas son un valioso apoyo a los procesos de capacitación y asistencia técnica, lo cual facilita la reflexión sobre los principales aspectos a considerar a la hora de tratar la variabilidad climática y sus consecuencias en el ámbito local. En este sentido, este enfoque no busca sustituir sino más bien complementar las metodologías cuantitativas de medición de impactos. De manera figurada, se corresponde con el diagnóstico preliminar que hace un médico cuando valora a un paciente por primera vez, para contextualizar en qué situación se encuentra con respecto a una serie de parámetros.

Es recomendable, de ser posible, realizar otras evaluaciones participativas complementarias a nivel del cafetal, tales como el diagnóstico productivo, plagas y enfermedades, balance de GEI, sombra, fertilidad de suelos, análisis organizacional de apoyo, etc. Estas evaluaciones ofrecen información más específica, necesaria para revisar la vulnerabilidad y capacidad adaptativa.

**El diagnóstico participativo**

La metodología para el diagnóstico participativo consta de seis pasos, desde la selección de la unidad productiva donde se va a aplicar la herramienta, hasta el resumen de hallazgos y definición de la estrategia para reducir la vulnerabilidad en el futuro (Fig. 33).

**Fig. 33.** Modelo para evaluar el nivel de vulnerabilidad-adaptación al cambio climático en unidades productivas cafetaleras
Descripción de los pasos

1. Se selecciona una unidad productiva en particular o un grupo de unidades productivas cafetaleras. Los criterios de selección dependen de las razones por las cuales se realiza el ejercicio. Para fines didácticos, por ejemplo, se puede aplicar la metodología en unidades productivas con usos contrastantes (unidad productiva con sistema agroforestal vs. unidad productiva con café a pleno sol; unidad productiva con sombra moderada vs. unidad productiva con exceso de sombra). Para diagnósticos y/o estudios más amplios es importante utilizar muestras representativas de los distintos perfiles de unidad productiva en una comunidad o región.

2. Al productor y/o grupo de productores participantes se les entrevista para obtener información sobre el tema de mitigación y adaptación (Cuadro 7). Es importante aclarar con los productores los conceptos clave y su relevancia; es conveniente aplicar la valoración en campo para observar y compartir criterios, antes de contestar las preguntas. La idea es valorar de manera directa el cafetal de la unidad productiva visitada; sin embargo, también se debe tener en cuenta el entorno de la propiedad para verificar posibles riesgos en áreas vecinas. Esta información debe incluirse a la hora de responder las preguntas relacionadas con la vulnerabilidad a fenómenos asociados a la variabilidad climática (Cuadro 7).

Las preguntas formuladas corresponden a tres grupos de variables/categorías: exposición (preguntas 1 a 6), impactos (preguntas 7 a 12) y capacidad adaptativa (preguntas 13 a 25). Esto posibilita hacer análisis específicos sobre cada condición para entender, por ejemplo, los niveles de exposición a factores críticos, los impactos ya experimentados y, principalmente, la capacidad adaptativa de la unidad productiva o grupo de unidades productivas analizadas.

**Cuadro 7.** Preguntas para evaluar la vulnerabilidad al cambio climático en unidades productivas cafetaleras (Nota: las preguntas se refieren a los cambios observados en los últimos 5 a 10 años)

<table>
<thead>
<tr>
<th>Variables evaluadas</th>
<th>Si</th>
<th>±</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variables de exposición</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ¿Ha habido cambios en la temperatura en los últimos años?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 ¿Las lluvias han sido irregulares en los últimos años?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 ¿Ha habido un aumento de lluvia con inundaciones y derrumbes?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 ¿Hay riesgo de huracanes y tormentas tropicales?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 ¿Ha habido sequías ( ), disminución ( ) o ausencia de agua ( ) en la propiedad en los últimos años?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 ¿La fuerza y frecuencia de vientos fuertes ha aumentado?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Variables de impactos (sensibilidad + exposición)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 ¿La mayoría de los suelos en los cafetales y en otros usos de la tierra en la unidad productiva, presentan señales de erosión?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 ¿La fertilidad de los suelos ha disminuido en los últimos años?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 ¿Hay floración irregular en las plantas de café?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
¿Hay incremento de caída de flores y frutos de café?

¿En los últimos años se ha incrementado el daño de plagas y enfermedades en los cafetales?

¿Existe disminución de la producción de café en los últimos años?

**Variables de capacidad adaptativa**

¿Faltan prácticas de conservación de suelo en la mayor parte del área de la unidad productiva?

¿En los suelos de los cafetales (entre los surcos de las plantas) no hay cobertura de hierbas y hojarasca?

¿La diversificación (árboles de servicio, maderables, frutales y otros cultivos de seguridad alimentaria) ( ) y la diversidad de aves ( ) en el cafetal es baja ( ) o inexistente ( )?

¿Hay áreas con café a pleno sol ( ), poca sombra (<20%) ( ) o con exceso de sombra (>70%) ( )?

Existen cafetales con edad mayor a 15 años ( ) y con baja productividad ( )?

¿No se tienen variedades de café tolerantes a sequía y altas temperaturas? ( ) ¿No se tienen variedades de café tolerantes/resistentes a enfermedades principales (Por ejemplo roya ( ), ojo de gallo ( ))?

¿Está ausente la práctica anual de poda y deshije en las plantas de café?

¿Está ausente cada año la resiembra de plantas de café?

¿Se aplica más de 3 qq de nitrógeno/mz/año, de origen sintético (químico)?

¿No se aplican abonos orgánicos al cafetal? ( ) ¿No se manejan la pulpa ( ) y aguas mieles ( )?

¿La mayoría de las quebradas y fuentes de agua no tienen cobertura forestal?

¿La mayoría de las áreas de otros usos de la unidad productiva no tienen cobertura forestal?

¿No existen procesos organizativos sobre mitigación y adaptación al cambio climático?

**Puntaje total**

Para cada pregunta planteada se dan tres opciones de respuesta: ‘Sí’ para cuando efectivamente se contesta de manera afirmativa sobre el fenómeno indagado, ‘No’ para expresar la negativa de ocurrencia del fenómeno y ‘±’ para cuando se quiera indicar que el fenómeno ocurre, pero en un nivel intermedio. Durante la evaluación el técnico facilitador debe asegurarse de no inducir las respuestas. Luego de contestada las 25 preguntas, se determina la categoría de vulnerabilidad y adaptación en que se encuentra la unidad productiva o grupo de unidades productivas valoradas. Se asigna un valor de referencia para cada una de las opciones de respuesta: -1 para el ‘sí’, 1 para el ‘no’ y 0,5 para ‘±’. A continuación, se hace la sumatoria de todos los valores obtenidos; el valor total de puntos se verifica con el Cuadro 8 para determinar la categoría correspondiente. Otro análisis consiste en verificar los aspectos que recibieron calificaciones de -1 y/o 0,5 en cada categoría.
Cuadro 8. Categorías para evaluar la vulnerabilidad al cambio climático en unidades productivas cafetaleras

<table>
<thead>
<tr>
<th>Categoría de referencia</th>
<th>Puntaje obtenido en la valoración</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Vulnerabilidad baja. Alta capacidad adaptativa</td>
<td>De 15 a 19 puntos</td>
</tr>
<tr>
<td>3. Vulnerabilidad y capacidad adaptativa moderadas</td>
<td>De 8 a 14 puntos</td>
</tr>
<tr>
<td>4. Vulnerabilidad y capacidad adaptativa regulares</td>
<td>De 1 a 7 puntos</td>
</tr>
<tr>
<td>5. Vulnerabilidad y capacidad adaptativa medianamente críticas</td>
<td>De -6 a 0 puntos</td>
</tr>
<tr>
<td>6. Vulnerabilidad y capacidad adaptativa críticas</td>
<td>De -13 a -7 puntos</td>
</tr>
<tr>
<td>7. Vulnerabilidad y capacidad adaptativa muy críticas</td>
<td>De -20 a -14 puntos</td>
</tr>
<tr>
<td>8. Totalmente vulnerable y sin ninguna capacidad adaptativa</td>
<td>De -25 a -21 puntos</td>
</tr>
</tbody>
</table>

3. Reflexionar con los productores acerca de los resultados de la valoración y posibles medidas que se pudieran implementar. Si bien es importante determinar en qué categoría de vulnerabilidad está la unidad productiva (o grupo de unidades productivas), lo más relevante es detectar las limitaciones (preguntas que recibieron una valoración de -1) y las potencialidades (preguntas que recibieron una valoración de 1). La reflexión se debe centrar, en particular, en los puntos críticos y en las medidas que debieran establecerse y/o fortalecerse para consolidar la mitigación y la adaptación.

Para analizar los aspectos que tuvieron valoración -1 se sugiere utilizar el formato del Cuadro 9. De manera participativa, junto con los productores se deben analizar las medidas o prácticas que pueden contribuir a solucionar los aspectos valorados como limitaciones. De preferencia, quien facilite debe motivar desde un inicio para que sean los propios productores quienes decidan cuáles pueden ser las opciones más valiosas para enfrentar los aspectos limitantes.

Cuadro 9. Identificación y priorización de opciones de adaptación y mitigación

<table>
<thead>
<tr>
<th>Posibles medidas o prácticas por limitación identificada</th>
<th>¿Quiénes podrán contribuir para implementar las medidas sugeridas?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>La familia productora con la ayuda de:</td>
</tr>
<tr>
<td></td>
<td>(Marque con X)</td>
</tr>
<tr>
<td></td>
<td>Asociación de productores locales</td>
</tr>
</tbody>
</table>

62
Recomendaciones:

- En el Cuadro 9 se anotan los aspectos limitantes identificados con el Cuadro 7 (uno por línea).
- La persona facilitadora debe tener el formato impreso en papel rotafolio para facilitar el trabajo y promover la participación.

4. Reflexión sobre posibles soluciones. De manera complementaria, se deben revisar otras posibles soluciones a partir de otros parámetros (como apoyo, en el Cuadro 10 se ofrecen algunas de las medidas o prácticas asociadas a las limitaciones del modelo propuesto). A continuación, para cada medida se determina si el productor y su familia la pueden implementar por ellos mismos o necesitarían ayuda (Cuadro 9). Para las medidas que requieren ayuda para la implementación, es importante especificar qué tipo de apoyo (capacitación, asistencia técnica, recursos económicos, etc.). Tanto a nivel de la unidad productiva como de las organizaciones se deben elaborar planes que describan las acciones, cronograma (corto, medio, largo plazo), presupuesto, responsables de seguimiento. Se debe buscar un continuo compromiso con la sostenibilidad de los procesos.

Cuadro 10. Medidas/prácticas que permitan a hacer frente a limitaciones de vulnerabilidad y adaptabilidad al cambio climático en unidades productivas cafetaleras

<table>
<thead>
<tr>
<th>Aspectos limitantes</th>
<th>Prácticas y/o medidas propuestas (A= adaptación; M= mitigación)</th>
</tr>
</thead>
</table>
| 1 ¿Ha habido cambios en la temperatura en los últimos años? | - Incorporar variedades resistentes. (A, M)  
- Utilizar cafetos de injertos de arábicos sobre robustas. (A, M)  
- Emplear sistemas de producción adaptados y diversificados. (A, M)  
- Implementar sistemas agroforestales y de reforestación. (A, M) |
| 2 ¿Las lluvias han sido irregulares en los últimos años? | - Utilizar prácticas de cosecha de agua en unidad productiva. (A)  
- Aplicar abonos foliares durante los periodos de sequía. (A)  
- Implementar sistemas de riego. (A) |
| 3 ¿Ha habido un aumento de lluvia con inundaciones y derrumbes? | - Emplear prácticas de conservación de suelos. (A, M)  
- Diseñar y manejar la sombra del café. (A, M)  
- Evitar cultivos en áreas de alto riesgo (pendientes muy fuertes, márgenes de ríos). (A, M) |
| 4 ¿Hay riesgo de huracanes y tormentas tropicales? | - Mantenerse informado por medio de los sistemas de alerta para tomar medidas de seguridad con anticipación. (A)  
- Evitar cultivos en áreas de alto riesgo (pendientes muy fuertes, márgenes de ríos). (A, M) |
| 5 ¿Ha habido sequías ( ), disminución ( ) o ausencia de agua ( ) en la propiedad en los últimos años? | - Utilizar prácticas de cosecha de agua en unidad productiva. (A)  
- Diseñar y manejar la sombra del café. (A, M)  
- Asegurar una buena cobertura del suelo. (A, M) |
| 6 ¿La fuerza y frecuencia de vientos fuertes ha aumentado? | - Instalar barreras vivas con árboles. (A, M)  
- Diseñar y manejar la sombra del café. (A, M) |
| 7 ¿La mayoría de los suelos en los cafetales y en otros usos de la tierra en la unidad productiva, presentan señales de erosión? | - Emplear prácticas de conservación de suelos (curvas de nivel, barreras vivas y muertas, cobertura del suelo, manejo selectivo de hierbas). (A, M)  
- Diseñar y manejar la sombra del café. (A, M) |
<table>
<thead>
<tr>
<th>Aspectos limitantes</th>
<th>Prácticas y/o medidas propuestas (A= adaptación; M= mitigación)</th>
</tr>
</thead>
</table>
| 8 ¿La fertilidad de los suelos ha disminuido en los últimos años? | - Establecer un programa de fertilización según análisis químico del suelo. (A)  
- Agregar materia orgánica. (A, M)  
- Diseñar y manejar la sombra del café con fuerte aporte de leguminosas. (A, M) |
| 9 ¿Hay floración irregular en las plantas de café? | - Establecer un programa de fertilización adecuado. (A, M)  
- Aplicar riego adecuado y oportuno. (A)  
- Diseñar y manejar la sombra. (A, M) |
| 10 ¿Hay incremento de caída de flores y frutos de café? | - Establecer un programa de fertilización adecuado (P, K, Ca, S). (A, M)  
- Aplicar riego adecuado y oportuno. (A)  
- Diseñar y manejar la sombra del café con fuerte aporte de leguminosas. (A, M) |
| 11 ¿En los últimos años se ha incrementado el daño de plagas y enfermedades en los cafetales? | - Hacer diagnósticos oportunos para determinar niveles de incidencia. (A, M)  
- Aplicar medidas de control ajustadas al comportamiento de clima y carga frutífera. (A, M)  
- Mantenerse informado por medio de los sistemas de alerta para tomar medidas de prevención y control. (A)  
- Dar un manejo integral al cafetal. (A, M)  
- Emplear el manejo integrado de plagas. (A, M)  
- Diseñar y manejar la sombra. (A, M)  
- Combinar lotes con diferentes variedades resistentes a distintas enfermedades. (A, M) |
| 12 ¿Existe disminución de la producción de café en los últimos años? | - Hacer un diagnóstico integral del cafetal (productivo, plagas y enfermedades, sombra, cobertura del suelo). (A, M)  
- Hacer un análisis químico del suelo y, de ser posible, un análisis foliar. (A, M)  
- Revisar el programa de fertilización y manejo de sombra. (A)  
- Revisar la necesidad de sustituir o incorporar nuevas variedades de café. (A, M) |
| 13 ¿Faltan prácticas de conservación de suelo en la mayor parte del área de la unidad productiva? | - Aplicar prácticas de conservación de suelos (curvas al nivel, barreras muertas y vivas, acequias, cobertura de suelos). (A, M) |
| 14 ¿En los suelos de los cafetales (entre los surcos de las plantas) no hay cobertura de hierbas y hojarasca? | - Dar un manejo selectivo a las hierbas para asegurar una buena cobertura (A, M)  
- Diseñar y manejar la sombra para que aporte materia orgánica. (A, M) |
<p>| 15 ¿La diversificación (árboles de servicio, maderables, frutales y otros cultivos de seguridad alimentaria) y la diversidad de aves en el cafetal es baja o inexistente? | - Diseñar y manejar sistemas agroforestales que combinen maderables, frutales y otros cultivos, en asocio con buenas densidades de árboles leguminosos. (A, M) |
| 16 ¿Hay áreas con café a pleno sol, poca sombra (&lt;20%) o con exceso de sombra (&gt;70%)? | - Diseñar y manejar sistemas agroforestales apropiados para cada condición. Buscar las mejores condiciones de sombra con niveles entre 30 y 55% con buena distribución en todo el cafetal. (A, M) |</p>
<table>
<thead>
<tr>
<th>Aspetos limitantes</th>
<th>Prácticas y/o medidas propuestas <em>(A= adaptación; M= mitigación)</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Existen cafetales con edad mayor a 15 años ( ) y con baja productividad ( )?</td>
</tr>
<tr>
<td></td>
<td>- Programar renovaciones acordes a las condiciones del productor. Si no es posible renovar de una sola vez toda el área, programar renovaciones por etapas. Las áreas de café viejo se mantienen con un manejo adecuado de podas, sombra, deshijas y fertilización. (A)</td>
</tr>
<tr>
<td>18</td>
<td>¿No se tienen variedades de café tolerantes a sequía y altas temperaturas? ( )  ¿No se tienen variedades de café tolerantes/resistentes a enfermedades principales (Por ejemplo roya ( ), ojo de gallo ( ))?</td>
</tr>
</tbody>
</table>
| | - Identificar la disponibilidad de variedades autorizadas de alto potencial, tales como Anacafé 14, Robusta, Hibridos F1, Catimores). (A, M)  
| | - Tener lotes de variedades diferentes con tolerancia/resistencia a enfermedades distintas. (A, M) |
| 19 | ¿Está ausente la práctica anual de poda y deshije en las plantas de café? |
| | - Después de la cosecha, iniciar un programa de podas y deshijas. De manera ideal, se deben hacer dos deshijas al año. (A) |
| 20 | ¿Está ausente cada año la resiembra de plantas de café? |
| | - Hacer resiembra anual de las plantas que mueren. Tener siempre un vivero para producir plantas de calidad. (A) |
| 21 | ¿Se aplica más de 3 qq de nitrógeno/mz/año, de origen sintético (químico)? |
| | - Sustituir o complementar los programas de fertilización química con abonos orgánicos (idealmente producidos en la propia unidad productiva). (A, M)  
| | - Buscar niveles de productividad relativamente constantes y rentables con aplicaciones moderadas de nitrógeno. (A, M) |
| 22 | ¿Se aplican abonos orgánicos al cafetal? ( )  ¿Se manejan la pulpa ( ) y aguas mieles ( )? |
| | - Incorporar abonos orgánicos de calidad en programa de fertilización. (A, M)  
| | - Elaborar abonos orgánicos en la unidad productiva misma. (A, M) |
| 23 | ¿La mayoría de las quebradas y fuentes de agua no tienen cobertura forestal? |
| | - Recuperar la cobertura forestal en las nacientes de agua. Si hay fuentes de agua en el cafetal, protegerlas con sistemas agroforestales, cobertura del suelo y no aplicar agroquímicos. (A, M) |
| 24 | ¿La mayoría de las áreas de otros usos de la unidad productiva no tienen cobertura forestal? |
| | - Utilizar diferentes arreglos de sistemas agroforestales, reforestación y regeneración natural para garantizar una producción agrícola diversificada y servicios ambientales. (A, M) |
| 25 | ¿No existen procesos organizativos sobre mitigación y adaptación al cambio climático? |
| | - Establecer y/o fortalecer acciones organizadas (capacitación, asistencia técnica, procesos de comunicación) para el establecimiento y seguimiento de programas de adaptación y mitigación. (A, M)  
| | - Crear comités de seguimiento para la mejora continua de las unidades productivas. (A, M) |
Módulo VII.
Buenas prácticas para la adaptación y mitigación al cambio climático
Objetivo de aprendizaje

- Conocer prácticas agrícolas que deben ser incorporadas en el quehacer de todo productor para reducir la vulnerabilidad de su cafetal, tanto a nivel de unidad productiva como de la comunidad.
- Motivar al productor para que pueda implementar estas acciones

Acciones que contribuyen a reducir la vulnerabilidad

Durante la última gran crisis de la roya, en el periodo 2012/2013, se hizo evidente en Centroamérica que los productores menos afectados fueron quienes cuidaban mejor su cafetal. Esto aplica a cualquier crisis. Si el productor está atento a los cambios en el cafetal, lo mantiene bien nutrido, bien podado y con un adecuado manejo de la sombra, el cambio climático lo va a afectar menos.

La dificultad ahora es seguir dando un buen mantenimiento al cafetal y, además, prepararnos adecuadamente para períodos de sequía y periodos de mucha lluvia.

Uno de los primeros cambios que hay que incorporar es la adecuación de calendarios. Es posible que haya que adaptarse a los períodos de lluvia y sequía, para encontrar el momento propicio para muchas de las prácticas de manejo. Por ejemplo, ya no es más válido recomendar que se aplique el abono en mayo, sino más bien cuando lleguen las lluvias, ya que en años de El Niño, las lluvias tienden a aparecer mucho más tarde en el año.

A continuación se presenta una serie de prácticas que pueden ayudar a las familias productoras a adaptarse al cambio climático. La información ofrecida fue recopilada en los talleres de validación que se realizaron en San Marcos y Cobán, Guatemala, en el mes de septiembre 2015 y que contaron con la participación de técnicos y productores. Para cada actividad productiva se dan recomendaciones para períodos de sequía, períodos con exceso de lluvia y heladas. La estructura usada en este módulo y parte del contenido fueron tomadas de un manual de buenas prácticas para la adaptación al cambio climático, elaborado por el Proyecto Cadena de Valor Rurales de Anacafé (2015).
Almácigos y siembra del café

Una dificultad que a menudo debe enfrentar el productor de café es que en un mismo ciclo del almácigo se den períodos de lluvia excesiva, sequía y heladas. Por eso, en la selección de las prácticas de manejo del almácigo se debe considerar la probable ocurrencia de condiciones variables.

Para asegurar una mayor resiliencia del almácigo y del cultivo en general, independientemente de las condiciones climáticas, hay que garantizar la buena nutrición y la protección al cultivo mediante la adición de materia orgánica al sustrato y la siembra de sombra temporal. La materia orgánica en la mezcla, por una parte, ayuda a retener agua en períodos de sequía y, por otra parte, facilita la infiltración del exceso de agua en períodos de mucha lluvia. Los productores deben hacer pruebas con diferentes materiales que tengan a la mano (como la pulpa de café compostada) para determinar cuál es la mejor mezcla en sus condiciones climáticas y de producción. Una mezcla de sustrato recomendable es 10% arena, 40% materia orgánica y 50% de suelo franco; para suelos arcillosos y arenosos hay que adaptar las proporciones.

Otra posible mezcla es 20% de arena pómez (arena cernida), 20% de materia orgánica (una cantidad mayor podría generar exceso de humedad en el sustrato y, por lo tanto, condiciones para la proliferación de hongos dañinos, como Rhizoctonia (mal del talluelo).

Se recomienda usar un tamaño de bolsa mínimo de 7” x 10” x 3 milésimas de grosor, y un máximo de 8” x 12”x 3 milésimas de grosor. Estos tamaños son adecuados para producir plantas de 10 a 12 meses de edad con excelente desarrollo de raíces, las cuales son muy apropiadas para injertar —como es sabido, el injerto retarda en unos dos meses el desarrollo de la plantita.

El uso de tapecos, o de sombra temporal con gandul, Teophrocia o Crotalaria puede ayudar en períodos de sequía o de mucha lluvia y también protege de las heladas. En el Cuadro 11 se presentan las recomendaciones dadas por participantes en los talleres de validación para la preparación de almácigos de café.
Cuadro 11. Prácticas recomendadas por productores para la adaptación del almácigo a la variabilidad climática

<table>
<thead>
<tr>
<th>Almácigo o semillero de café</th>
<th>Períodos secos</th>
<th>Períodos de exceso de lluvia</th>
<th>Heladas</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Selección de sitio</strong></td>
<td><strong>Selección de sitio en terreno seguro y con prácticas de conservación para evacuar agua, evitar derrumbes y pérdida del material.</strong></td>
<td><strong>Selección de un sitio con acceso a agua para riego por aspersión.</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Utilizar sustrato</strong></td>
<td><strong>Aumentar el contenido de arena en el sustrato para que infiltre el agua.</strong></td>
<td><strong>Utilizar un sustrato que permita un buen desarrollo de raíces.</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Monitorización periódica</strong></td>
<td><strong>Fertilizar con frecuencia y en pequeñas cantidades para evitar pérdidas por lixiviación.</strong></td>
<td><strong>Aparcar riego por aspersión cuando haya riesgo de heladas.</strong></td>
<td></td>
</tr>
<tr>
<td><strong>En suelos arcillosos o climas muy secos, desarrollar injertos (árabica + robusta) para prevenir ataques de nemátodos.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Establecer plantas de sombra, o sarán**

| **Aplicar riego con botellas reciclables o con miniaspersores.** | **Adaptar la aplicación de fungicidas e insecticidas a las condiciones de lluvia. Utilizar adherentes.** | **Agitar las plantitas para eliminar la escarcha.** |
| **Utilizar bolsas más grandes para un mayor desarrollo de raíces que permita aprovechar mejor el agua del suelo.** | **Permitir la ventilación entre pilones.** | |
| **Enterrar parcialmente las bolsas (pilones) para que retengan agua.** | **Aplicar ATP+K (adenosina trifosfato + potasio) en situaciones de estrés (heladas, sequía...)** | |
| **Utilizar prácticas artesanales para recolectar el agua de heladas o rocío.** | **Realizar zanjas de evacuación con un 2% de pendiente.** | |
| **Asperjar 4 onzas de azúcar por bomba de 16 litros para que la planta reduzca la transpiración al momento de la sequía.** | | |

Fuente: Talleres de validación del manual en San Marcos y Cobán, Guatemala.

Para la siembra del café, hay prácticas que se recomiendan sin importar la condición climática. Veamos las siguientes:

- Revisión de la raíz de la planta (sistema radicular)
- Árboles para sombra temporal o permanente
- Establecimiento de cortinas rompevientos
- Fertilización y enmiendas según resultado del análisis de suelos. Si se aplican cales agrícolas o materia orgánica, deben mezclarse bien con la tierra de llenado del hoyo de siembra.
- Ahoyado mínimo de 40 cm de profundidad y 40 cm de ancho
- Aplicación de abonos orgánicos bien compostados y mezclados con la tierra de llenado del hoyo.
Cuadro 12. Prácticas para la adaptación de la siembra de café al cambio climático

<table>
<thead>
<tr>
<th>Suceso</th>
<th>Prácticas recomendadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequía</td>
<td>No sembrar hasta el establecimiento de las lluvias.</td>
</tr>
<tr>
<td></td>
<td>Realizar prácticas de conservación de suelos, antes y después de la siembra para disminuir las pérdidas de suelo.</td>
</tr>
<tr>
<td></td>
<td>Usar cobertores artesanales para los pilones.</td>
</tr>
<tr>
<td></td>
<td>Adaptar calendario de aplicaciones a las condiciones de lluvia fuerte.</td>
</tr>
<tr>
<td></td>
<td>Usar mulch natural.</td>
</tr>
<tr>
<td></td>
<td>Aumentar la frecuencia de aplicaciones de fertilizantes y reducir dosis.</td>
</tr>
<tr>
<td></td>
<td>Instalar riego por goteo artesanal.</td>
</tr>
<tr>
<td></td>
<td>Manejar la sombra en función de la lluvia: reducir la sombra si aumenta la incidencia de lluvias.</td>
</tr>
<tr>
<td></td>
<td>Manejar densidad de sombra con especies de bajo consumo de agua.</td>
</tr>
<tr>
<td></td>
<td>Asociar de cultivos (frijol, ejote francés…)</td>
</tr>
<tr>
<td></td>
<td>Disminuir las limpias.</td>
</tr>
<tr>
<td></td>
<td>Identificar los sectores con mayor aptitud para la caficultura según pendiente y suelos.</td>
</tr>
</tbody>
</table>

Fuente: Talleres de validación del manual en San Marcos y Cobán, Guatemala.

Fertilización y enmiendas

La buena nutrición del café es uno de los factores más importantes para obtener buenas producciones. Para asegurarnos de que la nutrición del cafeto sea adecuada, la selección de fertilizantes debe basarse en un análisis foliar y de suelos y en resultados de experimentos de fertilización y encalado. La determinación de las épocas y dosis de aplicación también depende de esos análisis.

La fertilidad de los suelos tiene que ver con el origen y las condiciones climáticas; por eso no es posible generalizar recetas de fertilización. Ante el cambio y la variabilidad climática, probablemente los retos más importantes en cuanto a nutrición sean contar con suficiente agua para que los nutrientes se disuelvan en el suelo, pero no demasiada porque se lavan y, entonces, no son aprovechados.

Cuadro 13. Retos y posibles estrategias de manejo de la nutrición para reducir la vulnerabilidad del cafetal a la variabilidad climática

<table>
<thead>
<tr>
<th>Condición climática</th>
<th>Riesgos</th>
<th>Posibles estrategias para disminuir la vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Períodos muy secos</td>
<td>La planta absorbe los nutrientes en solución con agua. Si se aplica el fertilizante en un período muy seco la planta no lo aprovechará. El movimiento de los nutrientes dentro de la planta depende de su actividad fotosintética. Para la fotosíntesis, la planta requiere humedad en el suelo, pero no en exceso, y luz solar; esto se complementa con el aprovechamiento del carbono ambiental, el cual penetra a través de los estomas. Cuando el suelo está seco, no se cumple este ciclo y la planta tiende a cerrar sus estomas como una medida de defensa.</td>
<td>Escoja un buen momento para encalar y fertilizar; por lo general, durante las primeras lluvias. Agregue materia orgánica al suelo a lo largo del año; esto ayuda a que en períodos de sequía el suelo pueda retener más agua. Mantenga coberturas en el suelo para retener agua y nutrientes. Al hacer el control de las hierbas, estos nutrientes regresan al suelo.</td>
</tr>
</tbody>
</table>
La lluvia siempre lava los nutrientes. Al menos el 40% de los fertilizantes que se aplican en época lluviosa se pierden por lluvia. Al lavarse los nutrientes el suelo se va acidificando. Para disminuir la pérdida de nutrientes por lluvia se pueden usar estas prácticas:

- Si el suelo es muy ácido, encale antes de aplicar los fertilizantes. Esto ayudará a que su suelo pueda retener más nutrientes cuando lleguen las lluvias.
- No haga una sola aplicación de fertilizante; es mejor fraccionar el producto en varias aplicaciones.
- Algunos productores mezclan el fertilizante con compost antes de aplicarlo para que se retenga más en el suelo. La materia orgánica retiene muy bien los nutrientes.
- Para evitar que el fertilizante se lave cuando llueva, prepare terrazas, entiérrelo o tápelo con broza.

La materia orgánica del suelo tiene propiedades que se traducen en ventajas para el buen desarrollo de los cultivos; entre esas ventajas están las siguientes:

- Contribuye a la retención del agua y de los fertilizantes en el suelo.
- Suple algunos nutrientes mayores como nitrógeno, potasio y fósforo.
- Suple nutrientes menores, principalmente.
- Aporta y almacena carbono en el suelo, lo que facilita la vida de los microorganismos que ayudan a que los nutrientes estén disponibles y puedan ser absorbidos por las plantas. También contribuye al control de plagas y enfermedades que afectan la raíz y ayuda a mitigar los efectos del cambio climático.

La fertilización y las enmiendas también contribuyen a enfrentar situaciones de peligro que amenazan al cultivo del café; entre ellas:

- Ataques de plagas y enfermedades
- Baja producción
- Desgaste de nutrientes en el suelo
- Uso inadecuado del fertilizante
- Incremento de GEI
- Degradación del suelo
- Producción poco sostenible

Asimismo, la fertilización y las enmiendas tienen impactos positivos en la adaptación y mitigación del cambio climático:

- Mejoramiento de las condiciones físicas, químicas y biológicas del suelo
- Mejoramiento de la textura y estructura del suelo
- Incremento de los niveles de materia orgánica y nutrientes en el suelo
- Incremento de la producción del cultivo
- Incremento de la actividad microbiana

---

Fuente: Talleres de validación del manual en San Marcos y Cobán, Guatemala.
Sin embargo, hay también limitaciones que afectan la adopción de las prácticas:

- Alto costo de la implementación de las medidas
- El plazo de reacción del cultivo a las medidas aplicadas (mediano y largo plazo)
- Necesidad de grandes volúmenes de materia orgánica

Estructuras para la conservación de suelos

La mejor forma de mantener y mejorar las condiciones de los suelos es mediante la implementación de técnicas y estructuras que eviten la erosión. Los agentes erosivos ocasionan daños, muchas veces de carácter irreversible, y reducen la fertilidad natural de los suelos. La erosión se define como el desgaste, lavado, arrastre o pérdida de suelo por acción de las lluvias o del viento (Anacafé sf). La mejor forma de controlar la erosión es el suelo cubierto, ya sea por cobertura viva o muerta. A continuación se detallan algunas prácticas que contribuyen a la conservación de los suelos.

Curvas a nivel o siembra en contorno

Para establecer curvas a nivel, se traza una línea perpendicular a la pendiente del terreno. El propósito es establecer allí el surco de siembra o las obras de conservación de suelos. Se pueden trazar con aparatos rústicos, como el nivel “A” o caballete, o más sofisticados, como un clinómetro. La idea básica de las curvas a nivel es que cada surco de siembra sirva como una barrera al paso de las escorrentías; así se reduce la velocidad del agua y, por ende, el arrastre del suelo (Peña 2013).

Barrera viva

Esta práctica consiste en sembrar, sobre una curva a nivel, plantas perennes de crecimiento rápido, denso y buen amacollamiento, que no compitan con el cultivo. Entre las más usadas en los cafetales de Guatemala están el palo de agua, canavalía, gandul e
izote. La finalidad es que intercepten el agua de lluvia para disminuir la velocidad de escorrentía e impedir el arrastre del suelo. La distancia entre barreras depende de la pendiente; por ejemplo, con un 20% de pendiente, se establecen cada 15 m; con más de 50%, cada 8 m.

**Barreras rompevientos**

Una velocidad del viento mayor a los 2 m/seg ya es perjudicial para el café; por eso, en sitios ventosos es conveniente establecer cortinas rompevientos o barreras protectoras. Estas consisten en una o más hileras de árboles y arbustos en dirección perpendicular al viento dominante y dispuestos en tal forma que obligue al viento a elevarse sobre sus copas; así disminuye la velocidad y el azote al cultivo. La cortina, además, protege el suelo, el agua y a los animales.

**Terraza continua**

Una terraza continua es un terraplén formado sobre líneas a nivel y construido en sentido transversal a la pendiente del terreno; allí se establece el surco de siembra. La terraza debe tener un desnivel de un 5% máximo hacia el talud superior. Esta práctica es útil en terrenos con más de 20% de pendiente.

**Terraza individual**

Se trata de pequeñas plataformas semicirculares o cuadradas en cuyo centro se siembra la planta. El diámetro de la terraza puede estar determinado por el distanciamiento de siembra; se debe dar un desnivel de 5% contrario a la pendiente. Esta práctica puede usarse en cafetales ya establecidos y con pendientes de hasta 50%.
Barrera muerta

Consiste en la construcción de muros de piedra o rastrojos, siempre sobre una curva a nivel. El muro debe establecerse sobre una base plana de 30 cm para darle sustentación, y no sobrepasar los 60 cm de alto.

Acequias

Son zanjas o canales de forma trapezoidal construidos en dirección transversal a la pendiente. Por lo general tienen un ancho de 30 cm en el fondo y taludes regulares de acuerdo con la pendiente del terreno. A todo el largo del borde inferior se debe sembrar una barrera viva a modo de soporte. La distancia entre acequias depende de la pendiente; por ejemplo, con un 30% de pendiente, se establecen cada 20 m.

Cajuelas

Son pequeñas fosas que se construyen para retener el agua. Normalmente se construyen de 60 cm de largo, 30 cm de ancho y 30 cm de profundidad. Periódicamente deben limpiarse para sacar el suelo acumulado, el cual se puede utilizar para fortalecer las terrazas.

Diques de contención

Se trata de un sistema para el control de cárcavas y actúa por resistencia mecánica. La estructura se construye de piedra, palos o postes de brotones (izote) y se establecen en forma de media luna, perpendiculares a la pendiente. Las dimensiones y distancia entre diques dependen de la profundidad y pendiente de la cárcava.
Pozos de absorción

Son pequeñas zanjas de 50 cm de largo por 40 cm de ancho y hasta un metro de profundidad. Se hacen con el objeto de captar el agua que corre superficialmente (escorrentía). Se recomiendan en pendientes de 10 a 50%.

Las prácticas de conservación de suelos contribuyen a enfrentar situaciones de peligro que amenazan al cultivo del café; entre ellas:
- Problemas de erosión
- Baja fertilidad del suelo
- Degradación de cuencas
- Exposición de los cultivos y pasturas
- Daños por vientos fuertes
- Cambios extremos de temperatura

Asimismo, las prácticas de conservación de suelos tienen impactos positivos en la adaptación y mitigación del cambio climático:
- Generación de empleo
- Aumento de la fertilidad
- Reducción de la erosión

Sin embargo, hay también limitaciones que afectan la adopción de las prácticas:
- Alto costo de implementación y mantenimiento de las medidas

Cosecha de agua

Para el regadío de los almácigos de café o del cafetal mismo, si la sequía es muy severa, es necesario tener agua cosechada y almacenada. El agua se puede colectar en contenedores plásticos o de cemento que se construyen o se compran. Una forma de cosecha de agua es buscar lugares donde el agua baje por gravedad y se deposita en pozos hechos de ladrillo, cemento o plástico. Lo importante es que haya suficiente pendiente para que se llene en época de lluvias (Foto 7). Es importante que se hagan medidas de conservación de suelos en las pendientes por donde discurre el agua, para evitar que el depósito se llene de sedimentos. Las prácticas más comunes son la siembra de arbustos, hierbas o plantas que retengan el suelo. Además, los pozos deben cubrirse con plástico para evitar que el agua se evapore o se llene de insectos. También es conveniente ubicarlos en sitios que tengan sombra para que haya menos evaporación.
El tamaño del colector depende de las necesidades de riego. Antes de construir un sistema de cosecha de agua, defina para qué va a usar el agua recolectada (regar solo el almácigo o el cafetal completo). Pídale ayuda al personal técnico de Anacafé para calcular la cantidad de agua que se va a necesitar. Para determinar el tamaño de pozo adecuado para recoger la cantidad de agua que cubra las necesidades de regadío se usa esta fórmula:

$$A = 0.03 \frac{U}{P_{ma}}$$

Donde:
- $A$ = área necesaria
- $U$ = cantidad necesaria de agua de riego, en litros. Esa cantidad varía con el tipo de suelo y la edad de la planta de café.
- $P_{ma}$ = precipitación anual en mililitros. La precipitación varía por regiones; solicite el dato al Insivumeh o Anacafé.

**Foto 7.** Diferentes diseños de cosecha de agua. Unos son más caros que otros. Fotos de archivo.

Otra forma muy utilizada son los tanques que recolectan el agua llovida por medio de los canales de las casas. La ventaja de este sistema es que el agua se puede almacenar por largos períodos. Es importante que no haya ramas que den sobre el techo porque las hojas que caen ensucian el agua y taponan los canales. Siempre es bueno poner filtros y limpiarlos con frecuencia. Al inicio de la época lluviosa es mejor no recoger el agua de los primeros 15 minutos de lluvia, porque esa agua viene muy sucia. Para esto se pone una llave especial, o se mueve la canoa para que el agua sucia no llegue al tanque.
Los tanques deben estar bien cerrados para que no se llenen de larvas de zancudo. Esto es particularmente necesario ahora que hay tantas enfermedades trasmitidas por el zancudo *Aedes aegypti*, como el dengue, el zika o el chicunguña. También es conveniente agregar pequeñas cantidades de cloro al agua para que no nazcan los huevos del zancudo, si por casualidad logra meterse al tanque. Es mejor que los tanques se coloquen bajo sombra para mantener el agua fresca y lavarlos una vez al año.

Para calcular la cantidad máxima de agua que se va a recoger de su techo, se debe conocer el área del techo y la lluvia anual. Estos dos datos se multiplican y así se sabe la cantidad de agua que va a recoger durante todo el año.

\[
\text{Almacenamiento total} = \text{Área del techo} \times \text{precipitación anual de la zona}
\]

Usted no necesita un tanque enorme para guardar toda el agua del año. Puede ser un tanque más pequeño que cubra las necesidades; el resto del agua llovida se deja correr.

Para utilizar el agua almacenada para riego es recomendable aprovechar la pendiente; por eso el tanque de almacenamiento se debe colocar en un lugar más alto que donde se va a usar; de esta manera el agua se va por gravedad. En caso de que esto no sea posible, el agua se lleva manualmente o con bomba. Otra posibilidad es hacer un techo para recolectar el agua en un sitio cercano al cultivo, donde el agua se puede trasladar a los almácigos por medio de una manguera. Se recomienda hacer riego por goteo, ya que se aprovecha y ahorra más el agua.

**Manejo de la sombra**

El café tiene su origen en el sombrío de la selva tropical africana, por lo que un ambiente sombreado es favorable para el cultivo. En Guatemala se ha cultivado tradicionalmente bajo sombra, fundamentado en factores eco-fisiológicos, económicos y de mercado (Anacafé 2014).

**Funciones de la sombra**

La función fundamental de la sombra en el cafetal es regular las condiciones ambientales. La cobertura arbórea contribuye a conservar la humedad, regular la acción de la temperatura en el suelo y raíz de la planta, disminuir la evaporación del suelo y la transpiración de la planta, disminuir el desarrollo de las malezas y reducir la erosión. Las funciones más importantes de la sombra son las siguientes:

- Protege la plantación de la acción directa de los rayos de sol. El cultivo de café necesita de la radiación solar pero si es excesiva, la planta tiende a producir más frutos y de menor tamaño, con lo que aumenta la demanda de nutrientes. Esto acorta el tiempo de vida útil de la planta y exige podas más frecuentes para mantener el tejido productivo.
Regula la temperatura de la plantación y del suelo. Es de esperar que con la variabilidad climática la temperatura aumente; por eso, la regulación de la temperatura dentro del cafetal será una función cada vez más importante.

- Reduce la erosión del suelo y disminuye la población de malezas.
- Incrementa la cantidad de materia orgánica en el suelo, lo que mejora los niveles de fertilidad y la presencia de microorganismos en el suelo.
- Protege la plantación de la acción directa de los vientos. Esta protección se vuelve muy relevante en los años de El Niño, cuando aumenta la fuerza de los vientos, así como los periodos de sequía en la región del Pacífico.

Árboles de sombra y distancia de siembra

La densidad de sombra varía de región a región, e incluso de lote a lote, ya que en gran parte depende del tipo y arquitectura de los árboles, de la distancia de siembra, del lado de la montaña en el que está la unidad productiva y del manejo de la cobertura arbórea mediante un sistema de podas.

En los cafetales se usan diferentes tipos de sombra:

- **Sombra Provisional**: protege la plantación de café durante el primer año de establecimiento. Las plantas más usadas son Crotalaria, gandul y Tephrosia, sembradas sobre la calle a un metro de distancia.

- **Sombra Temporal o Semi-permanente**: se usan plantas de crecimiento rápido que brindan sombra al café durante los primeros cuatro años de establecimiento de la plantación, mientras se desarrolla la sombra permanente. Las plantas más usadas son higuero, cuernavaca, musas (banano-plátano) y baraja. El distanciamiento varía entre 4 x 4 metros a 6 x 6 metros.

- **Sombra Definitiva o Permanente**: se usan plantas que por sus hábitos de crecimiento y longevidad, conviven con los cafetales y les proporcionan sombra durante todo el ciclo productivo. Generalmente se utilizan leguminosas, como las ingas (chalúm, cushín, guaba, pepeto, guama, cuje), las eritrinas (pito o poró) y gravilea, que no es leguminosa. Esta última es especialmente recomendable para zonas altas, con influencia de climas muy fríos y heladas. La densidad de plantación de los árboles de sombra depende del tipo de suelo (textura, fertilidad, contenido de materia orgánica), clima, altitud, topografía y el manejo que se dé al cultivo. El distanciamiento varía de 6 x 8 metros a 12 x 12 metros, dependiendo de la especie y el clima donde se encuentra el cafetal.
Densidad de sombra y nutrición del cafetal

El factor más importante para modificar el impacto del clima en el cafetal es el uso y manejo de la sombra. La selección de los árboles de sombra, la cantidad y lugares donde se siembran, el manejo que se les dé, determinan en buena medida el impacto de la sombra. No existe un porcentaje de sombra ideal. Antes se decía que era del 40%, pero en realidad, hay que tomar en cuenta la nutrición del café, el lado de la montaña en que se encuentra la unidad productiva, la época del año.

A la hora de seleccionar y manejar los árboles de sombra es importante considerar que el café se da mejor cuando le entra sol en las primeras horas de la mañana. Si la unidad productiva está del lado de la montaña que no da sol en las mañanas, se tiene que aprovechar toda la luz de la tarde. En estas unidades productivas, la sombra debe ser menos densa. Si la plantación de café recibe radiación solar todo el día, la sombra debe ser más densa.

La energía para que las plantas produzcan frutos viene del sol. En las hojas se sintetiza la luz (fotosíntesis) para generar las sustancias que forman el grano de café. Entre más fotosintetice la planta, más nutrientes necesita. Esto quiere decir que un cafetal nunca debe estar a pleno sol si no se le puede nutrir muy bien. Sol y nutrientes tienen que ir de la mano, o las plantas se funden.

Si yo un año no tengo recursos para fertilizar o dar abonos orgánicos a mi cafetal, es mejor no podar mucho la sombra. Hay varias formas para calcular el porcentaje de sombra que tiene el cafetal. Escoja diez plantas en cualquier lugar del cafetal. Cuente al mediodía cuantas están bajo sombra y cuantas no. Si, por ejemplo, hay cuatro bajo sombra, esto quiere decir que el porcentaje de sombra es del 40%; si hay ocho, es del 80%. Repita el procedimiento en varios puntos del cafetal. Verá que en algunas partes del cafetal hay mucha sombra y en otras le falta. De momento, es necesario fertilizar más esas plantas y luego, se deberán sembrar más árboles de sombra.
Si no tiene recursos para fertilizar, es importante utilizar árboles que ayuden a la nutrición del cafeto, como *Inga* sp. y *Erythrina* sp. La hojarasca de estos árboles, sembrados a 4 x 6 m entre el café y podados dejando al menos dos ramas, pueden aportar de 100 a 200 kg de nitrógeno por hectárea. Entre más ramas les deje, más follaje producen y más nutrientes aportan al suelo. Sin embargo, hay que encontrar un balance delicado: dejar suficientes ramas para que den una buena cantidad de nutrientes, pero crear las condiciones de luz adecuadas para el cafetal.

**Sistema de podas**

Existen varios tipos de podas para controlar la sombra en el cafetal. Cedical (año) recomienda dos tipos de podas:

**Poda de formación**
- Se realiza cuando los árboles están jóvenes (menos de 5 años de edad).
- En árboles de 2 a 3 años se recomienda eliminar las ramas laterales para estimular el crecimiento a lo alto, de manera que el árbol sobrepase rápidamente la altura del cafeto.
- Una vez alcanzado este nivel, despuntar al árbol de sombra para estimular el crecimiento de ramas laterales.

**Poda de mantenimiento o regulación**
- Se realiza para mejorar la distribución de la luz dentro del cafetal.
- Consiste en determinar el centro de la copa del árbol y la distribución de ramas.
- Según la zona, debe dejarse un estrato de ramas horizontales alrededor del árbol a alturas de 2 a 3 metros sobre la altura superior de los cafetos.

### Cuadro 14. Recomendaciones para la poda de la sombra y del cafeto en distintas condiciones climáticas

<table>
<thead>
<tr>
<th>Sequías</th>
<th>Lluvias</th>
<th>Heladas</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Establecimiento de nuevas especies (captura de carbono, incorporación de nitrógeno y mayor producción de biomasa).</td>
<td>- Establecimiento de nuevas especies (captura de carbono, incorporación de nitrógeno y mayor producción de biomasa).</td>
<td>- Establecimiento de gravilea.</td>
</tr>
<tr>
<td>- Regulación entre 60-70%.</td>
<td>- Regulación entre 20-40% al inicio de la época de lluvias.</td>
<td>- Distanciamientos cortos 6*5 m</td>
</tr>
<tr>
<td></td>
<td>- Regulación entre 20-40% para favorecer la maduración del grano en zonas altas. En zonas bajas, la calidad mejora con una maduración más lenta.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Aprovechamiento de la época de mayor crecimiento vegetativo después de la cosecha.</td>
<td>- Aprovechamiento de la época de mayor crecimiento vegetativo.</td>
<td></td>
</tr>
<tr>
<td>- Cosecha de agua para riego durante la época lluviosa.</td>
<td>- Corte inclinado a 45° para evitar el ingreso de hongos al tronco de la planta.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Tomar en cuenta la época del manejo de marzo-mayo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cosecha de agua para riego durante la época lluviosa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Si se mantiene la condición año con año, pero no en toda la unidad productiva, abandonar temporalmente esas áreas de riesgo.</td>
</tr>
</tbody>
</table>

Fuente: Talleres de validación del manual en San Marcos y Cobán, Guatemala.
Las prácticas de manejo de la sombra contribuyen a enfrentar situaciones de peligro que amenazan al cultivo del café; entre ellas:

- Erosión del suelo y sequía
- Bajos niveles de materia orgánica
- Bajos niveles de fertilidad
- Temperaturas extremas
- Disminución de la biodiversidad
- Fuertes vientos y heladas
- Grano de baja calidad por deficiente maduración

Asimismo, el manejo de la sombra tiene impactos positivos en la adaptación y mitigación del cambio climático:

- Mejora la fertilidad del suelo
- Se reduce la erosión
- Regula y mejora las condiciones de la temperatura
- Contribuye a la captura y fijación de CO\(_2\)
- Mejora las características físicas, biológicas y químicas del suelo
- Ayuda al control directo de malezas, plagas y enfermedades
- Mantiene la humedad del suelo
- Ofrece protección contra vientos y heladas
- Aporta biomasa para energía
- Modifica la estructura de los suelos
- Aporta materia orgánica al suelo

Sin embargo, hay también limitaciones que afectan la adopción de las prácticas:

- Alto costo de implementación y mantenimiento
- Disponibilidad de recursos económicos
- Inadaptación de las especies forestales usadas
- Reducción de la producción por mal manejo de la sombra
- Falta de información y de capacitación

**Manejo de arven ses o hierbas**

Como cobertura, las malezas constituyen un valioso recurso para la conservación de los suelos. En cada unidad productiva se debe implementar un sistema de manejo de arven ses que integre diferentes métodos de control (Anacafé 2014).
Se debe tomar en cuenta el tipo de hierba predominante, el tipo de suelo, la topografía del terreno y el manejo agronómico de la plantación para implementar un plan de manejo integrado que incluya el control cultural, biológico, mecánico o manual y químico.

El uso de residuos orgánicos provenientes de las chapías o podas es de gran ayuda para el control de malezas en el cafetal. Los residuos se deben disponer de tal forma que ayuden a evitar que el agua de lluvia erosione el terreno. Estos residuos crean, además, un ambiente propicio para que se reproduzcan los microorganismos y lombrices que benefician a las matas de café (Ureña 2009).

Las arvenses contribuyen a mantener la frescura en los cafetales. Se sabe que, en general, la vegetación mantiene un microclima más favorable; por eso las hierbas juegan un rol importante en el mantenimiento de una temperatura adecuada en el suelo y en el cafetal. Además, el follaje y las raíces ayudan a recoger agua que entre al suelo, lo que significa más agua para las recargas de acuíferos. Por esto es mejor recortar las arvenses, y no eliminarlas del todo con raspas el suelo. La raspa del suelo es una práctica que debería de desaparecer.

Hay varias técnicas para procesar los residuos orgánicos para luego utilizarlos como abono.

El compostaje produce un abono orgánico rico y oscuro, producto de la descomposición de desechos. Este abono tiene un contenido balanceado de nutrientes, microorganismos y minerales (Manual de Lombricultura sf). También se le conoce como “humus artificial” obtenido por la transformación biológica controlada de la fracción orgánica de los residuos sólidos urbanos, vegetales y animales.

Mediante esta técnica se hace fermentar una mezcla de residuos orgánicos y se obtiene un producto homogéneo llamado compost, de aspecto granulado, que se incorpora al suelo como fertilizante. Es una técnica de bajo costo que facilita la transformación de residuos y subproductos orgánicos en abono para el suelo o sustratos para cultivo sin suelo. Con esta misma técnica se pueden introducir lombrices que contribuyen a acelerar y enriquecer el proceso. El compostaje reduce el impacto ambiental de los desechos y posibilita el aprovechamiento de los nutrientes que contienen. La práctica se da con temperaturas altas.
El mulch (hojarasca, rastrojo) son los residuos de cultivos anteriores que se dejan sobre el suelo para protegerlo; también es común transportar hojarasca desde otras partes de la unidad productiva a sitios con suelo desnudo. En casos extremos, también se usan plásticos o polímeros. El mulch es una cubierta protectora del suelo; no un fertilizante ni una enmienda, por lo que no debe mezclarse con el suelo. Hay muchos tipos de mulch, como el compost parcialmente descompuesto, restos de cortezas, virutas de madera, paja, conchas, hojas, cascarilla de arroz, etc. Su función es la de cubrir el suelo desnudo, para impedir la escorrentía superficial, regular la temperatura del suelo, conservar la humedad y evitar el crecimiento de malas hierbas por falta de luz. Un buen mulch suministra nutrientes lentamente al suelo a medida que se descompone y evita la erosión.

Las prácticas de manejo de arvenses o hierbas contribuyen a enfrentar situaciones de peligro que amenazan al cultivo del café; entre ellas:
- Peligro de erosión
- Baja fertilidad del suelo
- Degradación de cuencas
- Cultivos y pasturas desprotegidos
- Vientos fuertes
- Cambios extremos de temperatura

Asimismo, el manejo de arvenses tiene impactos positivos en la adaptación y mitigación del cambio climático:
- Generación de empleo
- Se reduce la erosión
- Mejora la fertilidad del suelo

Sin embargo, hay también limitaciones que afectan la adopción de las prácticas:
- Alto costo de implementación y mantenimiento
Manejo integrado de plagas

El manejo integrado de plagas (MIP) y enfermedades es un sistema de manejo que utiliza métodos de control compatibles con la conservación del medio ambiente, para mantener las poblaciones de plagas y enfermedades en condiciones que no causen pérdidas a los cultivos agrícolas. La base para su implementación es el muestreo, el cual ayuda a determinar los niveles de infestación o infección (Pappa y Flores 2010). Entre los métodos de control que pueden formar parte de un programa del MIP están:

- Control biológico
- Control etológico
- Control legal
- Control cultural o de cultivo
- Control autocida
- Control químico selectivo

Plagas del café y su control

La incidencia de plagas puede verse afectada por períodos secos. Es importante llevar un buen monitoreo para detectar si se trata de una amenaza real, o de brotes aislados que tienden a desaparecer solos, sin necesidad de ningún tipo de control.

En caso de que el ataque se convierta en un problema, en primera instancia se debe acudir a los controladores biológicos. Solo en casos de problemas muy serios, se aplican fungicidas o insecticidas sintéticos.

Dentro de las plagas que más afectan el café se encuentran la broca, los nemátodos y chapulines.

Los nemátodos son parásitos que afectan la producción de café. Los más frecuentes son los nemátodos lesionadores (Pratylenchus) y los agalladores (Meloidogyne). Las plantas afectadas muestran síntomas de amarillamiento, pérdida de vigor y defoliación. Como el nematodo afecta la raíz de la planta, en épocas de sequía, las plantas afectadas se vuelven muy susceptibles a la falta de agua.

En Guatemala, se ha detectado que alrededor del 45% de los almácigos tienen nemátodos. El laboratorio de Anacafé ofrece el servicio de análisis de nemátodos en almácigos; así el productor podrá evaluar el almácigo antes de comprar las plantas (Cedicafé 2012). Asegúrese de comprar un almácigo saludable, con bolsa grande; entre más grande la bolsa, la planta aguanta más días sin riego.
Si ya usted tiene nemátodos en la plantación, las mejores estrategias de manejo para evitar mayores daños son:
- Si se injerta, se recomienda utilizar café Robusta o Nemaya como patrones.
- Dele una buena nutrición a la planta desde pequeña.
- Agregue materia orgánica al suelo, ya sea con abono orgánico o manejo de coberturas. Esto favorece el desarrollo de bacterias y hongos del suelo que atacan a los nemátodos.
- Solo en última instancia, si el problema de nemátodos es muy serio, se aplica nematicida. Este es un plaguicida muy tóxico (etiqueta roja) y se debe usar equipo de protección al aplicarlo.

La **gallina ciega** es una plaga que afecta más que todo en años secos. Si la sequía es muy severa también la plaga se verá afectada, ya que su fuente de alimentación es la materia orgánica en el suelo.

**Control de enfermedades del café**

Algunas enfermedades afectan en mayor medida en áreas específicas. Tanto el productor como el personal técnico deben conocer las de mayor incidencia en su zona para establecer programas de control exitosos.

La mayoría de las enfermedades causadas por hongos se reactivan en los períodos de mucha lluvia, aunque algunas se dan más al sol y otras a la sombra (Cuadro 15).

**Cuadro 15.** Prácticas para el manejo de plagas y enfermedades del cafeto en condiciones climáticas variables

<table>
<thead>
<tr>
<th>En cualquier momento del año</th>
<th>En época de sequía</th>
<th>En época de lluvia excesiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brindar información relacionada con eventos de sequía y exceso de lluvia así como las alertas climáticas que puedan ocurrir.</td>
<td>Mantener la sombra a más del 75%. La cobertura real necesaria debe analizarse caso por caso.</td>
<td>Mantener la sombra alrededor del 50%</td>
</tr>
<tr>
<td>Capacitar sobre monitoreo de plagas y enfermedades</td>
<td>Mantener cultivos de cobertura de suelos</td>
<td>Aumentar la distancia de siembra</td>
</tr>
<tr>
<td>Trabajar injertos para mejorar la resistencia genética</td>
<td>Mantener la cobertura del suelo (mulch)</td>
<td>Establecer estructuras de conservación de suelos, como acequias</td>
</tr>
<tr>
<td>Mejorar la diversidad genética del café: 50% caturra y 50% catimores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emplear control biológico de plagas y enfermedades</td>
<td>Aplicar abonos orgánicos</td>
<td>Reforzar el programa de aplicación de abonos, rotando los productos usados</td>
</tr>
<tr>
<td>Mejorar la estructura de la sombra y de la plantación</td>
<td>Reforzar la nutrición vía foliar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminar hospederos de plagas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aplicar productos que reduzcan el estrés hídrico</td>
<td></td>
</tr>
</tbody>
</table>
Las prácticas de control integrado de plagas contribuyen a enfrentar situaciones de peligro que amenazan al cultivo del café; entre ellas:
- Severidad de ataques de plagas y enfermedades
- Pérdida de producción

Asimismo, el MIP tiene impactos positivos en la adaptación y mitigación del cambio climático:
- Aumento de la producción
- Mantenimiento de la calidad del café

Sin embargo, hay también limitaciones que afectan la adopción de las prácticas:
- Alto costo de los insumos
- Mayor necesidad de mano de obra
- Necesidad de contar con equipo de seguridad para fumigaciones

**Manejo de la cuenca hidrográfica**

Como ya se ha dicho, el cambio climático tiene implicaciones muy directas en el ciclo del agua, ya sea porque llueve demasiado (inundaciones) o muy poco (sequías). Ambos escenarios deben tomarse en cuenta en la planificación de la actividad cafetalera. La incorporación de prácticas de adaptación al cambio climático, a nivel de cuenca, es fundamental para la gestión sostenible del suelo, el bosque y principalmente del agua, el eje integrador de la cuenca.

La cuenca es el territorio delimitado por las montañas (llamado parte aguas o línea divisoria), cuyas aguas superficiales (ríos y riachuelos) drenan hacia un mismo punto o en una misma dirección (Fig. 34). Por lo regular, estas aguas van a dar a un río más grande, un lago o el mar. En estos territorios hay comunidades, caminos, beneficios, plantaciones de café y de otros cultivos, bosques, animales, personas… Por eso se dice que “todos vivimos dentro de una cuenca”.

El manejo de la cuenca es importante, ya que nos permite promover el uso sostenible de los recursos naturales y del ambiente. Muchas prácticas de adaptación se pueden trabajar en nuestra parcela, a nivel individual (conservación de suelos, manejo de la sombra, manejo del cafetal). Otras, sin embargo, deben trabajarse a nivel de cuenca, como la protección, conservación o restauración del bosque, pues este es uno de los principales reguladores del clima.

El manejo de la cuenca no se puede lograr con la participación de un par de personas; todo lo contrario, se necesita de la participación de los pobladores de las comunidades, autoridades comunales y municipales, instituciones, la academia. En fin, todos aquellos que de alguna u otra manera puedan contribuir (técnica, financiera y organizativamente) a mejorar o mantener el equilibrio de nuestra cuenca.
Protección y conservación de bosques y reforestación en áreas degradadas

El bosque es uno de los elementos del paisaje que más ayuda a regular el clima. En las condiciones actuales de cambio climático, la protección de los bosques es esencial para proteger la vida en el planeta. No aplique pesticidas cerca del bosque. Si hay un bosque cercano al cafetal, aproveche la semilla y la regeneración de los árboles para crear corredores entre unidades productivas. La broca, por ejemplo, es una plaga que se detiene cuando se encuentra un parche de bosque entre dos unidades productivas. Entonces, estos corredores de árboles le pueden servir no solo para contrarrestar el cambio climático y reducir la temperatura en el cafetal, sino también para manejar las plagas.

La conservación y protección de los bosques y la reforestación de terrenos con pendientes pronunciadas ayudan a la conservación del suelo y brindan protección contra vientos fuertes, tormentas y huracanes.

Fig. 34. La cuenca hidrográfica como espacio y territorio
Las prácticas de protección y conservación de bosques y reforestación en áreas degradadas contribuyen a enfrentar situaciones de peligro que amenazan al cultivo del café; entre ellas:
- Pérdida de recursos del suelo, flora y fauna
- Expansión de la frontera agrícola
- Tala excesiva
- Peligro de erosión
- Sequías
- Degradación de cuencas

Asimismo, la protección de los bosques tiene impactos positivos en la adaptación y mitigación del cambio climático:
- Aumenta la fertilidad de los suelos
- Mejora la conservación del recurso hídrico
- Captura CO₂
- Contribuye a la mitigación de la degradación del suelo
- Proporciona bienes y servicios ambientales
- Ofrece incentivos forestales

Sin embargo, hay también limitaciones que afectan la adopción de las prácticas:
- Alto costo de implementación y mantenimiento
- Débil legislación

**Estabilización de riveras y protección de cuerpos de agua**

Cuando las labores agrícolas o ganaderas llegan hasta el borde mismo de ríos y quebradas se incrementa la erosión del suelo, lo que provoca la formación de carácas, arrastre de suelo y acumulación de sedimentación en el cauce principal. Esto ocasiona el desbordamiento de los ríos en los lugares más bajos de la cuenca.

La reforestación de las áreas de protección de ríos y quebradas se debe realizar con especies nativas que no tengan valor comercial; así se evita que, cuando crezcan, sean taladas para aprovechar la madera. Estas especies favorecen también la presencia de especies animales, que buscan alimento y sitios de anidación; así se crean hábitats complejos que benefician a un alto número de especies de flora y fauna. El objetivo es mantener cubiertos los bordes de los cuerpos de agua con vegetación de todo tipo para proteger los suelos, el agua y la biodiversidad.
Las prácticas de estabilización de riveras y protección de cuerpos de agua contribuyen a enfrentar situaciones de peligro que amenazan al cultivo del café; entre ellas:

- Pérdida de recursos del suelo, flora y fauna
- Peligro de erosión
- Sequías
- Degradación de cuencas
- Degradación del recurso hídrico

Asimismo, la protección de los cuerpos de agua tiene impactos positivos en la adaptación y mitigación del cambio climático:

- Aumenta la fertilidad de los suelos
- Mejora la conservación del recurso hídrico
- Captura CO₂
- Contribuye a la mitigación de la degradación del suelo
- Proporciona bienes y servicios ambientales
- Ayuda al control de inundaciones y deslaves

Sin embargo, hay también limitaciones que afectan la adopción de las prácticas:

- Alto costo de implementación y mantenimiento
- Débil legislación

Otras acciones que contribuyen a reducir el riesgo climático en cafetales

Fortalecimiento de capacidades

El gran reto de conservar, proteger y mejorar los bienes y servicios naturales y compensar los efectos causados por el desequilibrio climático no puede ser atendido ni resuelto de manera centralizada. Para ello se necesita una iniciativa compartida entre los propietarios y habitantes de una cuenca, una comunidad, un municipio... Solo el esfuerzo conjunto, en coordinación con las autoridades y gobiernos locales, podrá garantizar el cuidado y preservación de sus bienes naturales. Asimismo, es necesaria la participación de actores públicos, privados y de la sociedad civil para desarrollar tales esfuerzos.

Las organizaciones de productores juegan un rol primordial en la implementación de los cambios que hacen falta para adaptarse a la variabilidad climática y mejorar las condiciones productivas de sus socios. Solo la administración efectiva de cada empresa cafetalera les permitirá alcanzar los objetivos propuestos de productividad, rentabilidad y sostenibilidad, así como la óptima utilización de los recursos disponibles (Pappa y Flores 2010). El apoyo de las organizaciones de productores es fundamental por sus esfuerzos a nivel de unidad productiva y de organización productiva.
Prácticas que las organizaciones de productores de café pudieran adoptar para adaptarse al cambio y la variabilidad climática

1. Establecer un comité que promueva buenas prácticas para enfrentar el cambio climático. Este comité debe trabajar temas como:
   - Comunicación e información sobre cambio climático
   - Capacitación en medidas de adaptación al cambio climático a productores y fuerzas vivas de la comunidad
   - Diversificación de unidad productiva y cafetales (cultivos alternativos, viveros con árboles de sombra y tapavientos, protección de quebradas…)
   - Estrategias para el manejo de enfermedades y brotes de plagas
   - Desarrollo de estrategias propias para la región
   - Capacitación sobre fuentes de contaminación o de emisión de GEI (fertilizantes, combustibles); dar prioridad a situaciones problemáticas en la zona.

2. Establecer una brigada de emergencias que cuente con recursos propios. Esos recursos pueden generarse mediante la venta del producto o aportes directos de los socios. La brigada puede ocuparse de situaciones que afectan a grupos de productores ( arreglo de caminos, por ejemplo) hasta préstamos en momentos de crisis.

3. Coordinar con otras instancias, para sumar esfuerzos entre todos los actores de la zona.

4. Realizar diagnósticos regionales para ver las áreas a las que se les debe prestar más atención.

5. Llevar un registro de todas las actividades que se hagan para informar a la comunidad del trabajo realizado.

Las prácticas que las organizaciones de productores de café pudieran adoptar contribuyen a enfrentar situaciones de peligro que amenazan al cultivo del café; entre ellas:
   - Pérdida de recursos del suelo, flora y fauna
   - Peligro de erosión
   - Degradación de cuencas y del recurso hídrico
   - Riesgos, amenazas y vulnerabilidad ante los efectos del cambio climático
   - Deslizamientos e inundaciones

Tales prácticas tienen impactos positivos en la adaptación y mitigación del cambio climático:
   - Capacidad para enfrentar los riesgos
   - Resiliencia

Sin embargo, hay también limitaciones que afectan la adopción de las prácticas:
   - Falta de sensibilización
   - Altos costos de capacitación
Establecimiento de programas de gestión del riesgo

La gestión del riesgo es el proceso mediante el cual una sociedad o un grupo social influyen positivamente en los niveles de riesgo que sufren o podrían sufrir. El riesgo se define como la combinación de la probabilidad de que se produzca un evento y sus consecuencias negativas. Los factores que lo componen son la amenaza y la vulnerabilidad.1 (CIIFEN 2007).

La estimación del riesgo agroclimático se establece por la relación entre la probable afectación climática sobre los cultivos y la capacidad de enfrentar las adversidades. La afectación climática es determinada por los parámetros de precipitación y temperatura; la vulnerabilidad del cultivo depende de su susceptibilidad en los diferentes ciclos de desarrollo, y la capacidad de enfrentar adversidades depende de las prácticas de manejo que se empleen. La exposición del cultivo depende, principalmente, de las características granulométricas del suelo y la recurrencia de eventos adversos (inundaciones, heladas) en la zona (CIIFEN 2007).

El establecimiento de programas de gestión del riesgo contribuye a enfrentar situaciones de peligro que amenazan al cultivo del café; entre ellas:

- Riesgos, amenazas y vulnerabilidad ante los efectos del cambio climático
- Ocurrencia de desastres

Tales programas tienen impactos positivos en la adaptación y mitigación del cambio climático:

- Capacidad para enfrentar los riesgos
- Resiliencia

Sin embargo, hay también limitaciones que afectan la adopción de las prácticas:

- Falta de sensibilización
- Altos costos de capacitación

1 Ver definiciones de ‘amenaza’ y ‘vulnerabilidad’ en el Glosario adjunto.
Establecimiento de programas para mejorar la diversidad genética

La genética es el campo de la biología que busca comprender la herencia biológica que se transmite de generación en generación. La mejora genética vegetal es esencialmente una selección, hecha por el ser humano, de las mejores plantas dentro de una población en la cual existe variabilidad. En otras palabras, es una selección posible gracias a la variabilidad existente (Pappa y Flores 2010).

En la naturaleza existe mucha diversidad genética que le permite a la naturaleza adaptarse a los cambios climáticos más fácilmente. En las plantaciones de café, así como en las plantaciones de cualquier otro cultivo, los investigadores se han concentrado en mejorar la productividad y reducir las horas de trabajo. Para lograrlo, se ha disminuido la diversidad genética lo más posible. Sin embargo, en las condiciones actuales hemos visto que las unidades productivas más resilientes al cambio climático son las que cuentan con mayor diversidad genética. Se ha comprobado que en los cafetales donde solo hay una o pocas variedades de café, el ataque de la roya y otras enfermedades es mucho más severo. Durante la crisis del 2012, quienes tenían solo caturra sufrieron grandes pérdidas.

Por eso es bueno fomentar la diversidad genética en la plantación. Después del huracán Mitch, un estudio realizado en Nicaragua en la zona de desastre encontró que las unidades productivas con mayor diversidad de cultivos, o más variedades de un mismo cultivo, fueron las que se recuperaron más rápidamente (Holtz-Jiménez 2006). Estas eran las unidades productivas con mayor resiliencia.

La razón principal para emplear variedades resistentes es incrementar la producción y la calidad de los productos agrícolas por unidad de superficie, en el menor tiempo, con el mínimo esfuerzo y con el menor costo posible. Esto se logra mediante nuevas variedades o híbridos de alto potencial; es decir, plantas que produzcan más grano, más forraje, más fruto, o más verduras en la menor área de terreno posible y que se adapten a las necesidades de quienes los producen y los consumen (Paredes sf).

Por medio del mejoramiento genético se logran nuevas variedades que contribuyan a estabilizar la producción con plantas más resistentes o tolerantes a las malezas, a plagas y enfermedades, a la sequía, al calor, al frío, al viento, u otros factores negativos.
El establecimiento de programas para mejorar la diversidad genética contribuye a enfrentar situaciones de peligro que amenazan al cultivo del café; entre ellas:

- Sequías
- Plagas insectiles
- Enfermedades fungosas

Tales programas tienen impactos positivos en la adaptación y mitigación del cambio climático:

- Producción sostenible
- Reducción de costos
- Incremento de la productividad
- Reducción de contaminación por agroquímicos
- Resiliencia

Sin embargo, hay también limitaciones que afectan la adopción de las prácticas de mejoramiento genético:

- Acceso a la tecnología
- Costo del material genético resistente
- Pérdida del cultivo actual
Glosario

Adaptación.- El proceso de ajuste al clima actual o esperado y sus efectos. En sistemas humanos, la adaptación busca moderar o evitar daño o explotar oportunidades beneficiosas. En algunos sistemas naturales, la intervención humana puede facilitar el ajuste al clima esperado y sus efectos.

Ambiente.- El sistema de elementos bióticos, abióticos, socioeconómicos, culturales y estéticos que interactúan entre sí, con los individuos y con la comunidad en la que viven, y determinan sus interrelaciones y sobrevivencia.

Amenaza.- Fenómeno, sustancia, actividad humana o condición peligrosa que puede ocasionar la muerte, lesiones u otros impactos a la salud, daños a la propiedad, pérdida de medios de sustento y servicios, trastornos sociales y económicos, daños ambientales. La amenaza se determina en función de la intensidad y la frecuencia.

Buenas prácticas agrícolas.- Conjunto de procedimientos destinados a promover la implementación de prácticas agronómicas adecuadas para cada cultivo, así como el manejo de los recursos hídricos y edáficos presentes en una unidad productiva.

Beneficiado húmedo.- Transformación del fruto de café maduro a café pergamino seco de punto comercial. Este proceso consta de las siguientes etapas: recolección del fruto, recibo y clasificación del fruto, despulpado, clasificación del café despulpado, remoción del mucílago, lavado del café fermentado, clasificación del café lavado, secamiento, almacenamiento y manejo de subproductos.

Cambio climático.- Variaciones en el estado medio del clima o en su variabilidad habitual, la cual persiste durante un período prolongado (normalmente decenios o incluso más). Tal variaciones pueden deberse a procesos naturales internos, a cambios de forzamiento externo, o cambios persistentes de origen antrópico, en la composición de la atmósfera o en el uso de las tierras.

Carbono neutral.- Se dice que una actividad, producto, organización o individuo que tiene una huella de carbono equivalente a cero es carbono neutral. Es decir, que la cantidad de GEI que emite se equilibra con la cantidad que absorbe. Tal absorción es el resultado de acciones implementadas por la organización, producto, actividad, individuo evaluado, como parte de sus procesos productivos, o mediante la compra de créditos de carbono.

Certificación.- Proceso mediante el cual organizaciones privadas acreditadas (entidades de certificación) evalúan la conformidad y autentican el cumplimiento de una norma de referencia de un producto, un servicio o un sistema de gestión de otra organización. Las entidades que certifican deben ser independientes de la organización que auditan. Las normas cuyo cumplimiento es certificado son elaboradas por organismos internacionales de normalización.

Conservación.- La aplicación de las medidas necesarias para preservar, mejorar, mantener, rehabilitar y restaurar las poblaciones y los ecosistemas, sin afectar su aprovechamiento.
Contaminación.- La presencia y/o introducción al ambiente de elementos nocivos a la vida, la flora o la fauna, o que degrade la calidad de la atmósfera, del agua, del suelo o de los bienes y recursos naturales en general.

Contaminante.- Toda materia, elemento, compuesto, sustancia, derivado químico o biológico, energía, radiación, vibración, ruido, o la combinación de algunos de ellos en cualquiera de sus estados físicos, que al incorporarse o actuar en la atmósfera, agua, suelo, flora, fauna o cualquier otro elemento del ambiente, altere o modifique su composición natural y degrade su calidad, poniendo en riesgo la salud de las personas y la preservación y conservación del ambiente.

Depósito de carbono.- Reservorio. Componente o componentes del sistema climático en el cual se almacena un GEI o un precursor de GEI. La biomasa forestal, los productos de la madera, los suelos y la atmósfera son depósitos de carbono. El carbono almacenado se expresa en unidades de masa.

Desarrollo sostenible.- Actividades y procesos que contribuyen a mejorar la calidad de la vida humana sin rebasar la capacidad de carga de los ecosistemas que lo sustentan.

Dióxido de carbono (CO₂).- Gas que se produce de forma natural y también como subproducto de la combustión de combustibles fósiles y biomasa, cambios en el uso del suelo y otros procesos industriales. Es el principal gas de efecto invernadero que afecta el equilibrio de la radiación en el planeta.

Emisiones.- Liberación en la atmósfera de gases de efecto invernadero y/o de sus precursores, en una zona y por un período determinado.

Equivalente en dióxido de carbono (CO₂ eq).- Unidad de medida utilizada para comparar las emisiones de diferentes gases de efecto invernadero, según su aporte al forzamiento radiactivo. La Convención Marco de Naciones Unidas sobre el Cambio Climático actualmente utiliza los potenciales de calentamiento atmosférico (PCA) como factores para el cálculo del equivalente en dióxido de carbono.

Gases con efecto invernadero (GEI).- Gases cuya presencia en la atmósfera contribuyen al efecto invernadero. Los más importantes están presentes en la atmósfera de manera natural, aunque su concentración puede verse modificada por la actividad humana. También entran en este concepto algunos gases artificiales generados por la industria.

Huellas de carbono.- Totalidad de gases de efecto invernadero emitidos por efecto directo o indirecto de un individuo, organización, evento o producto. Para determinarla, se hace un inventario de emisiones de GEI, según normativas internacionales reconocidas. La huella de carbono se mide en masa de CO₂ eq.

Metano (CH₄).- Gas de efecto invernadero relativamente potente que contribuye al calentamiento global del planeta, ya que tiene un potencial de calentamiento atmosférico de 21. En la naturaleza se forma por la descomposición anaeróbica de materia orgánica, durante los procesos de digestión y defecación de animales y por bacterias presentes en arrozales.
Mitigación del cambio climático.- Intervención antrópica para reducir las fuentes o mejorar los sumideros de gases de efecto invernadero.

Óxido nitroso (N₂O).- Gas de efecto invernadero con un potencial de calentamiento atmosférico de 310. Es producido por procesos biológicos en océanos y suelos, también por procesos antrópicos, como la combustión industrial, gases de escape de vehículos de combustión interna y emisiones (directas e indirectas) del suelo producto de la fertilización nitrogenada.

Residuos sólidos.- Material, producto o subproducto que, si bien no es considerado como peligroso, se descarta o desecha sin sujetarse a métodos de tratamiento o disposición final, a pesar de que pudiera ser aprovechado o reutilizado.

Resiliencia.- Capacidad de un sistema social, económico o y ambiental para superar eventos, tendencias o disturbios peligrosos. Para ello, el sistema responde o se reorganiza de manera que se mantengan su función, identidad y estructura esencial; al mismo tiempo, se mantienen su capacidad de adaptación, aprendizaje y transformación.

Riesgo.- Medida de la magnitud de los daños causados por una situación peligrosa. El riesgo se mide a partir de una determinada vulnerabilidad a cada tipo de peligro.

Servicios ecosistémicos.- Las funciones o procesos ecológicos que tienen valor monetario y no monetario para el individuo o la sociedad en general. Los SE se clasifican como: 1) servicios de soporte (productividad, mantenimiento de la biodiversidad); 2) servicios de aprovisionamiento (fibras, alimentos); 3) servicios de regulación (secuestro de carbono, regulación del clima); 4) servicios culturales (turismo, apreciación estética o espiritual).

Sistema de alerta temprana (SAT).- Capacidades necesarias para generar y divulgar información significativa y oportuna, que posibilite a individuos, comunidades y organizaciones amenazadas por un riesgo, para prepararse y actuar pronta y adecuadamente con el fin de reducir daños o pérdidas.

Sostenibilidad.- Característica o estado según el cual pueden satisfacerse las necesidades de la población actual y local sin comprometer la capacidad de las generaciones futuras o de poblaciones de otras regiones, de satisfacer sus necesidades.

Sumidero.- Todo proceso, actividad o mecanismo que elimine de la atmósfera un gas de efecto invernadero, un aerosol o un precursor de un gas de efecto invernadero.

Sostenible.- Un proceso sostenible es aquel que se puede mantener en el tiempo, por sí mismo, sin ayuda exterior y sin que se produzca escasez de los recursos existentes.

Variabilidad climática.- Variaciones en la media y otros estadísticos del clima en todas las escalas espaciales y temporales, más allá de los eventos climáticos individuales. La variabilidad puede deberse a procesos internos del sistema climático (variabilidad interna), o externos provocados por causas naturales o antrópicas (variabilidad externa).

Vulnerabilidad.- Predisposición a ser afectado de forma negativa. La vulnerabilidad abarca una variedad de conceptos y elementos que incluyen la susceptibilidad al daño, la ausencia de capacidad para superar un evento y adaptarse a las nuevas condiciones.
FORMULARIO DE CAMPO

Herramienta para implementar el diagnóstico para identificar y priorizar alternativas para la adaptación y mitigación en unidades productivas productoras de café

Datos generales

No. de entrevista: ________________________  Departamento: __________________________

Municipio:  ______________________________________________________________________

Coordenadas: Latitud: _____________________ Longitud: _______________________________

Nombre del productor (a): __________________________________________________________

Código: ________________________________

Nivel de escolaridad: ______________________  Edad: _______________ Género:  ___________

Fecha de levantamiento: _______________ Nombre del encuestador: _______________________

Datos de la unidad productiva

Nombre de la unidad productiva: _____________________________________________________

Altura: ___________________________ Área total:  ______________________________________

Área con café: ________________________ Pendiente:  ________________________________

Producción promedio: _____________________ Variedades:  _____________________________

Número de meses secos: _______________ Puntaje final:  ________________________________

Observaciones generales:
<table>
<thead>
<tr>
<th>No.</th>
<th>Variables evaluadas</th>
<th>Sí</th>
<th>+o -</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Variables de exposición</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>¿Ha habido cambios en la temperatura en los últimos años?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>¿Las lluvias han sido irregulares en los últimos años?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>¿Ha habido un aumento de lluvia con inundaciones y derrumbes?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>¿Hay riesgo de huracanes y tormentas tropicales?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>¿Ha habido sequías ( ), disminución ( ) o ausencia de agua ( ) en la propiedad en los últimos años?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>¿La fuerza y frecuencia de vientos fuertes ha aumentado?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Variables de impactos (sensibilidad + exposición)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>¿La mayoría de los suelos en los cafetales y en otros usos de la tierra en la unidad productiva, presentan señales de erosión?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>¿La fertilidad de los suelos ha disminuido en los últimos años?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>¿Hay floración irregular en las plantas de café?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>¿Hay incremento de caída de flores y frutos de café?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>¿En los últimos años se ha incrementado el daño de plagas y enfermedades en los cafetales?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>¿Existe disminución de la producción de café en los últimos años?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Variables de capacidad adaptativa</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>¿Faltan prácticas de conservación de suelo en la mayor parte del área de la unidad productiva?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>¿En los suelos de los cafetales (entre los surcos de las plantas) no hay cobertura de hierbas y hojarasca?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>¿La diversificación (árboles de servicio, maderables, frutales y otros cultivos de seguridad alimentaria) ( ) y la diversidad de aves ( ) en el cafetal es baja ( ) o inexistente ( )?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>¿Hay áreas con café a pleno sol ( ), poca sombra (&lt;20%) ( ) o con exceso de sombra (&gt;70 %) ( )?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Existen cafetales con edad mayor a 15 años ( ) y con baja productividad ( )?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>¿No se tienen variedades de café tolerantes a sequía y altas temperaturas? ( ) ¿No se tienen variedades de café tolerantres/resistentes a enfermedades principales (Por ejemplo roya ( ), ojo de gallo ( ))?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>¿Está ausente la práctica anual de poda y deshijie en las plantas de café?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>¿Está ausente cada año la resiembra de plantas de café?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>¿Se aplica más de 3 qq de nitrógeno/mz/año, de origen sintético (químico)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>¿No se aplican abonos orgánicos al cafetal? ( ) ¿No se manejan la pulpa ( ) y aguas mieles ( )?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>¿La mayoría de las quebradas y fuentes de agua no tienen cobertura forestal?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>¿La mayoría de las áreas de otros usos de la unidad productiva no tienen cobertura forestal?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>¿No existen procesos organizativos sobre mitigación y adaptación al cambio climático?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>PUNTAJE TOTAL</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Medidas y prácticas que permitan reducir la vulnerabilidad al cambio climático en unidades productivas productoras de café

<table>
<thead>
<tr>
<th>Aspectos limitantes</th>
<th>Prácticas y/o medidas propuestas (A= adaptación; M= mitigación)</th>
</tr>
</thead>
</table>
| 1 ¿Ha habido cambios en la temperatura en los últimos años? | - Incorporar variedades resistentes. (A, M)  
- Utilizar cafetos de injertos de arábicos sobre robustas. (A, M)  
- Emplear sistemas de producción adaptados y diversificados. (A, M)  
- Implementar sistemas agroforestales y de reforestación. (A, M) |
| 2 ¿Las lluvias han sido irregulares en los últimos años? | - Utilizar prácticas de cosecha de agua en unidad productiva. (A)  
- Aplicar abonos foliares durante los periodos de sequía. (A)  
- Implementar sistemas de riego. (A) |
| 3 ¿Ha habido un aumento de lluvia con inundaciones y derrumbes? | - Emplear prácticas de conservación de suelos. (A, M)  
- Diseñar y manejar la sombra del café. (A, M)  
- Evitar cultivos en áreas de alto riesgo (pendientes muy fuertes, márgenes de ríos). (A, M) |
| 4 ¿Hay riesgo de huracanes y tormentas tropicales? | - Mantenerse informado por medio de los sistemas de alerta para tomar medidas de seguridad con anticipación. (A)  
- Evitar cultivos en áreas de alto riesgo (pendientes muy fuertes, márgenes de ríos). (A, M) |
| 5 ¿Ha habido sequías ( ), disminución ( ) o ausencia de agua ( ) en la propiedad en los últimos años? | - Utilizar prácticas de cosecha de agua en la unidad productiva. (A)  
- Diseñar y manejar la sombra del café. (A, M)  
- Asegurar una buena cobertura del suelo. (A, M) |
| 6 ¿La fuerza y frecuencia de vientos fuertes ha aumentado? | - Instalar barreras vivas con árboles. (A, M)  
- Diseñar y manejar la sombra del café. (A, M) |
| 7 ¿La mayoría de los suelos en los cafetales y en otros usos de la tierra en la unidad productiva, presentan señales de erosión? | - Emplear prácticas de conservación de suelos (curvas de nivel, barreras vivas y muertas, cobertura del suelo, manejo selectivo de hierbas). (A, M)  
- Diseñar y manejar la sombra del café. (A, M) |
| 8 ¿La fertilidad de los suelos ha disminuido en los últimos años? | - Establecer un programa de fertilización según análisis químico del suelo. (A)  
- Agregar materia orgánica. (A, M)  
- Diseñar y manejar la sombra del café con fuerte aporte de leguminosas. (A, M) |
| 9 ¿Hay floración irregular en las plantas de café? | - Establecer un programa de fertilización adecuado. (A, M)  
- Aplicar riego adecuado y oportuno. (A)  
- Diseñar y manejar la sombra. (A, M) |
| 10 ¿Hay incremento de caída de flores y frutos de café? | - Establecer un programa de fertilización adecuado (P, K, Ca, S). (A, M)  
- Aplicar riego adecuado y oportuno. (A)  
- Diseñar y manejar la sombra del café con fuerte aporte de leguminosas. (A, M) |
| 11 ¿En los últimos años se ha incrementado el daño de plagas y enfermedades en los cafetales? | - Hacer diagnósticos oportunos para determinar niveles de incidencia. (A, M)  
- Aplicar medidas de control ajustadas al comportamiento de clima y carga fructífera. (A, M)  
- Mantenerse informado por medio de los sistemas de alerta para tomar medidas de prevención y control. (A)  
- Dar un manejo integral al cafetal. (A, M)  
- Emplear el manejo integrado de plagas. (A, M)  
- Diseñar y manejar la sombra. (A, M)  
- Combinar lotes con diferentes variedades resistentes a distintas enfermedades. (A, M) |
<table>
<thead>
<tr>
<th>Aspectos limitantes</th>
<th>Prácticas y/o medidas propuestas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12 ¿Existe disminución de la producción de café en los últimos años?</td>
<td>- Hacer un diagnóstico integral del cafetal (productivo, plagas y enfermedades, sombra, cobertura del suelo). (A, M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hacer un análisis químico del suelo y, de ser posible, un análisis foliar. (A, M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Revisar el programa de fertilización y manejo de sombra. (A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Revisar la necesidad de sustituir o incorporar nuevas variedades de café. (A, M)</td>
<td></td>
</tr>
<tr>
<td>13 ¿Faltan prácticas de conservación de suelo en la mayor parte del área de la unidad productiva?</td>
<td>- Aplicar prácticas de conservación de suelos (curvas al nivel, barreras muertas y vivas, acequias, cobertura de suelos). (A, M)</td>
<td></td>
</tr>
<tr>
<td>14 ¿En los suelos de los cafetales (entre los surcos de las plantas) no hay cobertura de hierbas y hojarasca?</td>
<td>- Dar un manejo selectivo a las hierbas para asegurar una buena cobertura (A, M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Diseñar y manejar la sombra para que aporte materia orgánica. (A, M)</td>
<td></td>
</tr>
<tr>
<td>15 ¿La diversificación (árboles de servicio, maderables, frutales y otros cultivos de seguridad alimentaria) ( ) y la diversidad de aves ( ) en el cafetal es baja ( ) o inexistente ( )?</td>
<td>- Diseñar y manejar sistemas agroforestales que combinen maderables, frutales y otros cultivos, en asocio con buenas densidades de árboles leguminosos. (A, M)</td>
<td></td>
</tr>
<tr>
<td>16 ¿Hay áreas con café a pleno sol ( ), poca sombra (&lt;20%) ( ) o con exceso de sombra (&gt;70 %) ( )?</td>
<td>- Diseñar y manejar sistemas agroforestales apropiados para cada condición. Buscar las mejores condiciones de sombra con niveles entre 30 y 55% con buena distribución en todo el cafetal. (A, M)</td>
<td></td>
</tr>
<tr>
<td>17 Existen cafetales con edad mayor a 15 años ( ) y con baja productividad ( )?</td>
<td>- Programar renovaciones acordes a las condiciones del productor. Si no es posible renovar de una sola vez toda el área, programar renovaciones por etapas. Las áreas de café viejo se mantienen con un manejo adecuado de podas, sombra, deshijas y fertilización. (A)</td>
<td></td>
</tr>
<tr>
<td>18 ¿No se tienen variedades de café tolerantes a sequía y altas temperaturas? ( ) ¿No se tienen variedades de café tolerantes/ resistentes a enfermedades principales (Por ejemplo roya ( ), ojo de gallo ( ))?</td>
<td>- Identificar la disponibilidad de variedades autorizadas de alto potencial, tales como Anacafé 14, Robusta, Híbridos F1, Catimores). (A, M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tener lotes de variedades diferentes con tolerancia/resistencia a enfermedades distintas. (A, M)</td>
<td></td>
</tr>
<tr>
<td>19 ¿Está ausente la práctica anual de poda y deshijes en las plantas de café?</td>
<td>- Después de la cosecha, iniciar un programa de podas y deshijas. De manera ideal, se deben hacer dos deshijas al año. (A)</td>
<td></td>
</tr>
<tr>
<td>20 ¿Está ausente cada año la resiembra de plantas de café?</td>
<td>- Hacer resiembra anuales para reponer las plantas que mueren. Tener siempre un vivero para producir plantas de calidad. (A)</td>
<td></td>
</tr>
<tr>
<td>21 ¿Se aplica más de 3 qq de nitrógeno/mz/año, de origen sintético (químico)?</td>
<td>- Sustituir o complementar los programas de fertilización química con abonos orgánicos (ideally producidos en la propia unidad productiva). (A, M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Buscar niveles de productividad relativamente constantes y rentables con aplicaciones moderadas de nitrógeno. (A, M)</td>
<td></td>
</tr>
</tbody>
</table>
**Aspectos limitantes**

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Prácticas y/o medidas propuestas (A= adaptación; M= mitigación)</th>
</tr>
</thead>
</table>
| ¿No se aplican abonos orgánicos al cafetal? (   ) ¿No se manejan la pulpa (   ) y aguas mieles (   )? | - Incorporar abonos orgánicos de calidad en programa de fertilización. (A, M)  
- Elaborar abonos orgánicos en la unidad productiva misma. (A, M) |
| ¿La mayoría de las quebradas y fuentes de agua no tienen cobertura forestal? | - Recuperar la cobertura forestal en las nacientes de agua. Si hay fuentes de agua en el cafetal, protegerlas con sistemas agroforestales, cobertura del suelo y no aplicar agroquímicos. (A, M) |
| ¿La mayoría de las áreas de otros usos de la unidad productiva no tienen cobertura forestal? | - Utilizar diferentes arreglos de sistemas agroforestales, reforestación y regeneración natural para garantizar una producción agrícola diversificada y servicios ambientales. (A, M) |
| ¿No existen procesos organizativos sobre mitigación y adaptación al cambio climático? | - Establecer y/o fortalecer acciones organizadas (capacitación, asistencia técnica, procesos de comunicación) para el establecimiento y seguimiento de programas de adaptación y mitigación. (A, M)  
- Crear comités de seguimiento para la mejora continua de las unidades productivas. (A, M) |

Para cada pregunta planteada se dan tres opciones de respuesta: ‘Sí’ para cuando efectivamente se contesta de manera afirmativa sobre el fenómeno indagado, ‘No’ para expresar la negativa de ocurrencia del fenómeno y más o menos (+ o –). Se asigna un valor de referencia para cada una de las opciones de respuesta: -1 para el ‘sí’, 1 para el ‘no’ y 0.5 para ‘±’. De ahí se suman todos los valores obtenidos para obtener el puntaje final.

**Categorías para evaluar la vulnerabilidad al cambio climático en unidades productivas cafetaleras**

<table>
<thead>
<tr>
<th>Categoría de referencia</th>
<th>Puntaje obtenido en la valoración</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Vulnerabilidad baja. Alta capacidad adaptativa</td>
<td>De 15 a 19 puntos</td>
</tr>
<tr>
<td>3. Vulnerabilidad y capacidad adaptativa moderadas</td>
<td>De 8 a 14 puntos</td>
</tr>
<tr>
<td>4. Vulnerabilidad y capacidad adaptativa regulares</td>
<td>De 1 a 7 puntos</td>
</tr>
<tr>
<td>5. Vulnerabilidad y capacidad adaptativa medianamente críticas</td>
<td>De -6 a 0 puntos</td>
</tr>
<tr>
<td>6. Vulnerabilidad y capacidad adaptativa críticas</td>
<td>De -13 a -7 puntos</td>
</tr>
<tr>
<td>7. Vulnerabilidad y capacidad adaptativa muy críticas</td>
<td>De -20 a -14 puntos</td>
</tr>
<tr>
<td>8. Totalmente vulnerable y sin ninguna capacidad adaptativa</td>
<td>De -25 a -21 puntos</td>
</tr>
</tbody>
</table>
**Ficha técnica para el productor**

Fecha: ________________________________________________________________

Nombre: ______________________________________________________________

Nombre del evaluador __________________________________________________

Puntaje obtenido: _______________________________________________________

Nivel de vulnerabilidad: ________________________________________________

Tipo de apoyo que requerirá para implementar medidas:

1) Individual  3) MAGA  5) OTRO
2) ANACAFE  4) ONG

<table>
<thead>
<tr>
<th>Limitante identificada</th>
<th>Prácticas recomendadas</th>
<th>Tipo de apoyo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Literatura consultada


Haggar, J; Barrios, M; Bolaños, M; Merlo, M; Moraga, P; Munguía, R; Ponce, A; Romero, S; Soto, G; Staver, C; Virgino Filho, E. 2011. Coffe agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agroforestry Systems 82(3): 285-301.


Hairiah, K; Swibawa, IG; Dewi, WS; Aini, FK; Suprayogo, D; Widianto, F; Susilo, FX; van Noordwijk, M. 2014. Shade, litter, nematodes, earthworms, termites and companion trees in coffee-based agroforestry in relation to climate resilience. World Agroforestry Congress [New Delhi, IN].


Läderach, P; Zelaya, C; Ovalle, O; García, S; Eitzinger, A; Baca, M. 2012. Escenarios del impacto del clima futuro en áreas de cultivo de café en Guatemala. Cali, Colombia, CIPAV. 41 p.

March, I; Cabral, H; Echeverría, Y. Una metodología para diseñar estrategias y planes de acción orientados a la adaptación al cambio climático para la conservación de biodiversidad, ecosistemas y servicios ecosistémicos.


Rapidel, B; Allinne, C; Cerdán, C; Meylan, L; Virginio Filho, E. de M; Avelino, J. 2015. Efectos ecológicos y productivos del asocio de árboles de sombra con café en sistemas agroforestales. In: Montagnini, F; Somarriba, E; Murgueitio, E; Fassola, E; Eibl, B. (Eds.). Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Cali, Colombia, CIPAV/CATIE. Serie técnica. Informe técnico 402. p. 5-19.


Virginio Filho, E.deM; Casanoves, F; Haggar, J; Staver, C; Soto, G; Avelino, J; Tapia, A; Merlo, M; Salgado, J; Noponen, M; Perdomo, Y; Vásquez, A. 2015. La productividad útil, la materia orgánica y el suelo en los primeros 10 años de edad en sistemas de producción de café a pleno sol y bajo varios tipos de sombra y niveles de insumos orgánicos y convencionales en Costa Rica. In: Montagnini, F; Somarriba, E; Murgueitio, E; Fassola, E; Eibl, B. (Eds.). Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Cali, Colombia, CIPAV/CATIE. Serie técnica. Informe técnico 402. p. 131-151.
### Participantes en los talleres de validación del manual

#### Participantes en el taller de validación del manual realizado en San Marcos, Guatemala

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Institución</th>
<th>Correo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rómulo López</td>
<td>Cooperativa La Igualdad</td>
</tr>
<tr>
<td>2</td>
<td>René Gaspar</td>
<td>Cooperativa La Igualdad</td>
</tr>
<tr>
<td>3</td>
<td>Sebastián Charchalac</td>
<td>TNC/CNCG/Guatemala</td>
</tr>
<tr>
<td>4</td>
<td>Marco Rodríguez</td>
<td>Anacafé</td>
</tr>
<tr>
<td>5</td>
<td>César Augusto Barrera Salazar</td>
<td>Anacafé</td>
</tr>
<tr>
<td>6</td>
<td>Víctor Rodas</td>
<td>TNC/CNCG</td>
</tr>
<tr>
<td>7</td>
<td>Mariela Melendez</td>
<td>Anacafé</td>
</tr>
<tr>
<td>8</td>
<td>Elías de Melo V.F.</td>
<td>CATIE</td>
</tr>
<tr>
<td>9</td>
<td>Mario Chocooj</td>
<td>Anacafé</td>
</tr>
<tr>
<td>10</td>
<td>Carolina Vargas</td>
<td>SCAN</td>
</tr>
<tr>
<td>11</td>
<td>Walter A. Bardales</td>
<td>Insivumeh</td>
</tr>
<tr>
<td>12</td>
<td>Carlos Albrillo</td>
<td>Agexport</td>
</tr>
<tr>
<td>13</td>
<td>Sergio Noriega</td>
<td>Agexport</td>
</tr>
<tr>
<td>14</td>
<td>Byron Castillo Palacios</td>
<td>Anacafé</td>
</tr>
<tr>
<td>15</td>
<td>Juan Carlos Castillo</td>
<td>Anacafé</td>
</tr>
<tr>
<td>16</td>
<td>Federico Herrera</td>
<td>Coopeerativa La Bendición</td>
</tr>
<tr>
<td>17</td>
<td>Marcelino Robledo</td>
<td>Coopeerativa La Bendición</td>
</tr>
<tr>
<td>18</td>
<td>Rudy Morales</td>
<td>Copecafé</td>
</tr>
<tr>
<td>19</td>
<td>Byron Morales</td>
<td>Copecafé</td>
</tr>
<tr>
<td>20</td>
<td>Edgar Enrique García</td>
<td>Anacafé</td>
</tr>
<tr>
<td>21</td>
<td>Carlos Pineda Barrios</td>
<td>Anacafé</td>
</tr>
<tr>
<td>22</td>
<td>Enrique Lol Hermández</td>
<td>Agexport</td>
</tr>
<tr>
<td>23</td>
<td>Jorge Cardona</td>
<td>TNC</td>
</tr>
<tr>
<td>24</td>
<td>José Tuch</td>
<td>Manos Campesinas</td>
</tr>
<tr>
<td>25</td>
<td>Euler Antonio Morales Roblero</td>
<td>FECCEG</td>
</tr>
<tr>
<td>26</td>
<td>Sergio Bernardo Méndez</td>
<td>FECCG</td>
</tr>
<tr>
<td>27</td>
<td>Miguel Ángel del Aguilar Cárdenas</td>
<td>Manos Campesinas</td>
</tr>
<tr>
<td>28</td>
<td>Hugo René M.</td>
<td>Manos Campesinas</td>
</tr>
<tr>
<td>29</td>
<td>Salvador Hernández</td>
<td>Copecafé</td>
</tr>
<tr>
<td>30</td>
<td>Evelio Mejía</td>
<td>Copecafé</td>
</tr>
<tr>
<td>31</td>
<td>Gabriela Soto Muñoz</td>
<td>Consultora, CATIE</td>
</tr>
<tr>
<td>32</td>
<td>Arnoldo Melgar</td>
<td>PVCR, Anacafé</td>
</tr>
</tbody>
</table>
## Participantes en el taller de validación del manual realizado en Cobán, Guatemala

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Institución</th>
<th>Correo electrónico</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Bárbara Viguería</td>
<td>CATIE Costa Rica</td>
<td><a href="mailto:bviguera@catie.ac.cr">bviguera@catie.ac.cr</a></td>
</tr>
<tr>
<td>2 Baudilio Fuentes</td>
<td>Anacafé / Región VI</td>
<td><a href="mailto:Baudilio.fr@anacafe.org">Baudilio.fr@anacafe.org</a></td>
</tr>
<tr>
<td>3 Byron Castillo</td>
<td>Anacafé R IV</td>
<td><a href="mailto:byron.eca@anacafe.org">byron.eca@anacafe.org</a></td>
</tr>
<tr>
<td>4 Carolina Vargas</td>
<td>SCAN</td>
<td><a href="mailto:cvargas@scanprogram.org">cvargas@scanprogram.org</a></td>
</tr>
<tr>
<td>5 Eder González</td>
<td>Anacafé</td>
<td><a href="mailto:eder.lga@anacafe.org">eder.lga@anacafe.org</a></td>
</tr>
<tr>
<td>6 Elena Florian</td>
<td>CATIE</td>
<td><a href="mailto:eflorian@catie.ac.cr">eflorian@catie.ac.cr</a></td>
</tr>
<tr>
<td>7 Elías de Melo</td>
<td>CATIE</td>
<td><a href="mailto:eliasdem@catie.ac.cr">eliasdem@catie.ac.cr</a></td>
</tr>
<tr>
<td>8 Enrique Abril</td>
<td>Promecafé - RUTA</td>
<td><a href="mailto:Enrique.abril@iica.net">Enrique.abril@iica.net</a></td>
</tr>
<tr>
<td>9 Erick San Jose</td>
<td>Fedecocagua, Res VI</td>
<td><a href="mailto:Ericksanjose2003@yahoo.es">Ericksanjose2003@yahoo.es</a></td>
</tr>
<tr>
<td>10 Federico Pop Rey</td>
<td>Anacafé</td>
<td><a href="mailto:Federico.pr@anacafe.org">Federico.pr@anacafe.org</a></td>
</tr>
<tr>
<td>11 Fernanda Puga Raxcacó</td>
<td>Estudiante, Cobán</td>
<td><a href="mailto:pugafer@gmail.com">pugafer@gmail.com</a></td>
</tr>
<tr>
<td>12 Fidel Raxcacó</td>
<td>Anacafé</td>
<td><a href="mailto:fidelraxcaco@yahoo.es">fidelraxcaco@yahoo.es</a></td>
</tr>
<tr>
<td>13 Freddy Díaz</td>
<td>Anacafé Región VII</td>
<td><a href="mailto:Freddy.adv@anacafe.org">Freddy.adv@anacafe.org</a></td>
</tr>
<tr>
<td>14 Gabriela Soto</td>
<td>Consultora CATIE</td>
<td><a href="mailto:agroecologiauna@gmail.com">agroecologiauna@gmail.com</a></td>
</tr>
<tr>
<td>15 Jaime Alejandro Mó Mó</td>
<td>Anacafé Región VI</td>
<td><a href="mailto:Jaime.amm@anacafe.org">Jaime.amm@anacafe.org</a></td>
</tr>
<tr>
<td>16 José Juan Álvarez</td>
<td>Anacafé</td>
<td><a href="mailto:edson.jjam@anacafe.org">edson.jjam@anacafe.org</a></td>
</tr>
<tr>
<td>17 Luciano Fajardo</td>
<td>Anacafé Región VII</td>
<td><a href="mailto:Jose.lff@anacafe.org">Jose.lff@anacafe.org</a></td>
</tr>
<tr>
<td>18 Luis Cordón</td>
<td>Anacafé</td>
<td><a href="mailto:luis.ecs@anacafe.org">luis.ecs@anacafe.org</a></td>
</tr>
<tr>
<td>19 Manuel Solis</td>
<td>Anacafé / Cedicafé</td>
<td><a href="mailto:manuel.esg@anacafe.org">manuel.esg@anacafe.org</a></td>
</tr>
<tr>
<td>20 Mariela Meléndez</td>
<td>Anacafé</td>
<td><a href="mailto:Lmariela.mp@anacafe.org">Lmariela.mp@anacafe.org</a></td>
</tr>
<tr>
<td>21 Mario Chocooj</td>
<td>Anacafé / Cedicafé</td>
<td><a href="mailto:Mario.echp@anacafe.org">Mario.echp@anacafe.org</a></td>
</tr>
<tr>
<td>22 Mynor Zepeda</td>
<td>Anacafé R IV</td>
<td><a href="mailto:mynor.rza@anacafe.org">mynor.rza@anacafe.org</a></td>
</tr>
<tr>
<td>23 Oscar Mazar Noriega</td>
<td>Anacafé Región VI</td>
<td><a href="mailto:Oscar.gmn@anacafe.org">Oscar.gmn@anacafe.org</a></td>
</tr>
<tr>
<td>24 Rafael Sicaju</td>
<td>Anacafé</td>
<td><a href="mailto:rafael.djsl@anacafe.org">rafael.djsl@anacafe.org</a></td>
</tr>
<tr>
<td>25 Roberto Soto</td>
<td>Anacafé / Cedicafé</td>
<td><a href="mailto:Luis.rsf@anacafe.org">Luis.rsf@anacafe.org</a></td>
</tr>
<tr>
<td>26 Ruth Martinez</td>
<td>CI / Costa Rica</td>
<td><a href="mailto:rmartinez@conservation.org">rmartinez@conservation.org</a></td>
</tr>
<tr>
<td>27 Walter Bardales</td>
<td>Insivumeh</td>
<td><a href="mailto:bardaleswa@gmail.com">bardaleswa@gmail.com</a></td>
</tr>
</tbody>
</table>
Reduciendo la vulnerabilidad al cambio climático del sector cafetalero en Guatemala

Manual Técnico para el fortalecimiento del sector cafeto en Guatemala frente al cambio climático