Buenas prácticas para la mitigación al cambio climático de los sistemas de producción de leche en Costa Rica

Francisco Casasola Coto
Cristóbal Villanueva Najarro
Buenas prácticas para la mitigación al cambio climático de los sistemas de producción de leche en Costa Rica

Francisco Casasola Coto
Cristóbal Villanueva Najarro

Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)
Programa de Ganadería y Manejo del Medio Ambiente
Turrialba, Costa Rica
2015
CATIE no asume la responsabilidad por las opiniones y afirmaciones expresadas por los autores en las páginas de este documento. Las ideas de los autores no reflejan necesariamente el punto de vista de la institución. Se autoriza la reproducción parcial total de la información contenida en este documento, siempre y cuando se cite la fuente.

© Centro Agronómico Tropical de Investigación y Enseñanza, CATIE, 2015
ISBN 978-9977-57-651-0

Los autores agradecen al equipo técnico del Programa Agroambiental de la Cooperativa de Productores de Leche Dos Pinos R.L por los insumos y recomendaciones aportados para mejorar la calidad y aplicación práctica de este documento.

Créditos:

Editores técnicos: Francisco Casasola, Cristóbal Villanueva
Edición: Joselyne Hoffmann
Diseño: Silvia Francis Salazar, Oficina de Comunicación, CATIE
Revisores: Augusto Rojas, Sergio Abarca, Alejandro Molina y Diego Tobar

Fotografías
Cristobal Villanueva, Darwin Lombo, Francisco Casasola; Programa de Ganadería y Manejo del Medio Ambiente
Contenido

Introducción .. 5

Capítulo I. Estrategias en alimentación y nutrición para disminuir las emisiones de metano entérico en los sistemas de producción de leche ... 9
 1.1. Antecedentes ... 9
 1.2. Aporte de la ganadería a los medios de vida de las familias ... 10
 1.3. Ganadería y emisión de GEI ... 11
 1.3.1. Fuentes de emisión de GEI .. 11
 1.3.2. Emisión de GEI y cambio climático ... 11
 1.3.3. Inventario de GEI en Costa Rica ... 12
 1.3.4. Huella de carbono en el sector ganadero .. 12
 1.3.5. Anatomía y fisiología del aparato digestivo .. 13
 1.4. Opciones para reducir el metano entérico en los sistemas ganaderos ... 16
 1.4.1. Aceptores de electrones .. 18
 1.4.2. Lípidos ... 20
 1.4.3. Inclusión de concentrado en la dieta .. 22
 1.4.4. Calidad del forraje ... 25
 1.4.5. Nutrición de precisión .. 27
 1.5. Consideraciones ... 29

Capítulo II. Manejo integral del estiércol en fincas productoras de leche en Costa Rica .. 33
 2.1. Antecedentes .. 33
 2.2. Producción de purines en ganaderías especializadas en leche ... 34
 2.3. Determinación de la cantidad de purín en instalaciones ganaderas ... 35
 2.3.1. Contenido nutricional de los purines .. 36
 2.4. Usos de purines como subproducto de la actividad ganadera ... 37
 2.4.1. Uso de los purines en la producción de praderas y cultivos ... 38
 2.4.2. Uso de los purines en la elaboración de biogás y energía ... 38
 2.5. Impacto de los purines sobre el ambiente ... 39
 2.5.1. Impacto de los purines sobre los recursos naturales .. 39
 2.5.2. Impacto de los purines sobre la salud humana y animal .. 40
2.5.3. Impacto de la ganadería sobre las emisiones de GEI ... 41
2.6. Emisiones de CH₄ y N₂O provenientes de la gestión del estiércol en la ganadería..... 42
2.7. Factores de emisión por gestión del estiércol en ganadería especializada en leche 45
2.7.1. Factor de emisión de metano (CH₄) por gestión del estiércol en ganadería especializada en leche... 45
2.7.2. Factor de emisión de óxido nitroso (N₂O) por gestión del estiércol en ganadería especializada en leche... 49
2.8. Emisiones directas de N₂O de la gestión del estiércol .. 50
2.9. Normativa ambiental vigente en Costa Rica sobre el manejo de purines en la actividad de lechería especializada (Decreto N° 37017-MAG)................................. 51
2.10. Buenas prácticas para mejorar el uso del estiércol en fincas 56

Capítulo III. Opciones técnicas para conservar y almacenar carbono en fincas ganaderas de lechería especializada... 81
3.1. Antecedentes ..81
3.2. Fijación y almacenamiento de carbono (CO₂) ... 82
3.3. Almacenamiento de carbono en fincas ganaderas ... 83
3.4. Metodología para la medición de carbono en diferentes depósitos 84
3.5. ¿Cómo mejorar la captura y el almacenamiento de carbono en una finca ganadera? 85
3.5.1. Protección de áreas de bosque existentes en fincas ganaderas 86
3.5.2. Regeneración natural .. 87
3.5.3. Plantaciones forestales .. 88
3.5.4. Árboles dispersos en potreros ... 89
3.5.5. Cercas vivas .. 97
3.5.6. Cortinas rompevientos ... 104
3.5.7. Árboles maderables o frutales en líneas ... 109
3.6. Manejo de especies leñosas en sistemas silvopastoriles .. 111
3.7. Beneficios de los árboles en los sistemas silvopastoriles .. 113
3.8. Fijación y almacenamiento de carbono en sistemas de pasturas y silvopastoriles116
3.9. Prácticas de gestión de pasturas con potencial para aumentar el secuestro de carbono en fincas ganaderas ... 119
3.10. Balance de GEI ... 121
3.11. Consideraciones .. 123
Introducción

Existe un creciente interés por el impacto que causan las emisiones de gases de efecto invernadero (GEI), provenientes de las actividades humanas, sobre la atmósfera y el clima. Este interés ha presionado a la comunidad mundial para abordar el tema de manera urgente. En 2013, la concentración de CO₂ en la atmósfera aumentó 142%; la de metano, 253%; y la de óxido nitroso, 121%, con respecto a los niveles registrados en la era preindustrial, antes del año 1750 (Marton 2015). Además, se sabe que el uso de combustibles fósiles genera alrededor de 79,7% del CO₂ que se emite en el mundo.

Gerber et ál. (2013) mencionan que las emisiones de GEI de la cadena de producción de ganado contribuyen con 14,5% de las emisiones globales. Las fuentes de emisiones de GEI en los sistemas ganaderos especializados en leche son, principalmente, las siguientes:

a) emisiones de metano (CH₄), procedentes de la fermentación entérica;

b) emisiones de metano y óxido nitroso (N₂O), derivadas del manejo del estiércol;

c) emisiones directas, provenientes de fertilizantes nitrogenados sintéticos;

d) emisiones de dióxido de carbono (CO₂), originadas por la utilización de combustibles fósiles, debido al uso de maquinaria y equipo agrícola en la finca; y

e) emisiones de dióxido de carbono, resultantes de los cambios en los usos de la tierra.

Aunque los sistemas de producción ganaderos emiten GEI, también pueden actuar como depósitos de carbono, especialmente cuando se promueve la forestería (plantaciones forestales o bosques de regeneración natural) en áreas con menor vocación para la ganadería, o la arborización en áreas con pasturas (Amézquita et al. 2008).
Con base en lo anterior, se creó el proyecto piloto “Mejorando las capacidades para el desarrollo de estrategias ganaderas con bajas emisiones de gases de efecto invernadero en el sector ganadero” (EC-LEDS, por sus siglas en inglés)\(^1\). El proyecto llevó a cabo una serie de actividades de investigación y extensión para contribuir al desarrollo de sistemas competitivos y con bajas emisiones de carbono en el subsector de ganadería de leche, como estrategia para la adaptación al cambio climático en Costa Rica.

Las actividades de extensión del proyecto incluyeron talleres de fortalecimiento de capacidades para extensionistas del sector ganadero, tanto de organizaciones públicas como privadas. Se identificaron tres temas en la ganadería de leche con potencial para mitigación del cambio climático:

a) estrategias en alimentación y nutrición;

b) manejo integral del estiércol; y

c) secuestro y fijación de carbono en fincas ganaderas.

Dichos temas constituyen los capítulos del presente manual, el cual se espera sirva como material de consulta para los extensionistas que trabajan con familias productoras.

El primer capítulo se enfoca en las estrategias en alimentación y nutrición, y su relación con la productividad, los ingresos y las emisiones de metano entérico de los sistemas ganaderos. El capítulo define la relación de la ganadería con las emisiones de GEI y sus implicaciones en el cambio climático, enfocándose en el metano entérico. También, explica la anatomía y fisiología del aparato digestivo de los rumiantes, que permite a este grupo de animales emitir metano entérico por medio del eructo (al menos 95%) y por el recto (alrededor de 5%). Finalmente, se abordan opciones para reducir el metano entérico de los sistemas ganaderos —subrayando aquellas opciones con mediano y alto potencial de mitigación del metano entérico en fincas ganaderas, como aceptores de electrones (nitroetano, nitratos, sulfatos y fumaratos), lípidos,

\(^1\) Este proyecto fue financiado por el Departamento de Estado de los Estados Unidos (DoS), e implementado por medio del Departamento de Agricultura de los Estados Unidos (USDA).
uso de concentrados, calidad de forraje y alimentación de precisión. El reto es que las familias productoras tengan acceso a tecnologías adaptadas a sus condiciones socioeconómicas y agroecológicas, para que sus fincas ganaderas produzcan más, generen mayores ingresos y emitan menos carbono. Se espera que lo anterior brinde nuevas y futuras oportunidades de mercado a las familias productoras.

El segundo capítulo destaca las ventajas del manejo integral del estiércol en las fincas ganaderas especializadas en leche. En Costa Rica, se destacan las siguientes prácticas de gestión del estiércol: digestión anaeróbica mediante el uso de tanque purinero (líquido-sólido); biodigestión de purines; y compostaje. Sin embargo, la implementación de estas prácticas requiere fortalecer las capacidades y sensibilizar a productores y técnicos. Entre los beneficios del manejo integral del estiércol se destacan: la reducción en la contaminación de aguas de consumo humano y animal; el ahorro en el consumo de energía eléctrica y gas domiciliario cuando se reemplazan por biogás del biodigestor; y la reducción en la compra de fertilizantes sintéticos por el uso de purines, afluentes del biodigestor (Biol) y compost proveniente de la separación de sólidos del purín. Asimismo, un buen manejo del estiércol disminuye la presencia de patógenos importantes para la salud humana (como *Escherichia coli* y *Salmonella*) y reduce la emisión de GEI (como metano y óxido nitroso). Finalmente, se mejora la calidad de vida de las familias ganaderas y de la sociedad en general, al contribuir con la salud humana, la seguridad alimentaria y nutricional, el clima y aire limpio, y la conservación de los recursos naturales.

El tercer capítulo ofrece una visión del potencial de las fincas ganaderas arboladas en el secuestro de carbono, como estrategia para compensar las emisiones de GEI (además de los otros beneficios de los árboles; por ejemplo, producción de madera, sombra y alimento para el ganado, conservación de la biodiversidad, y mejoramiento o mantenimiento de las características del suelo). Las secciones del capítulo incluyen conceptos de almacenamiento y fijación de carbono, usos de la tierra, una metodología para determinar el almacenamiento de carbono en diferentes depósitos presentes en los usos de la tierra, y una serie de buenas prácticas para mejorar la captura y el almacenamiento de carbono en fincas ganaderas. Algunas de estas buenas prácticas son: la protección de las áreas de bosque existentes; la liberación de áreas para regeneración natural; y la promoción de la regeneración natural y la siembra de leñosas en diferentes arreglos espaciales (plantaciones forestales, árboles
dispersos en potreros, cercas vivas, barreras rompevientos, siembra de maderables en plantaciones lineales, etc.). El capítulo también menciona algunas prácticas de gestión de pasturas con potencial para aumentar el secuestro de carbono en suelos. La arborización de pasturas o zonas con limitantes para la producción agropecuaria beneficia la diversificación productiva, secuestra carbono que ayuda a compensar las emisiones, y permite que el sistema ganadero enfrente mejor la variabilidad del clima (sequías prolongadas) y los trastornos en los mercados (cambios en precio o demanda de productos).

Referencias

Amézquita, MC; Amézquita, E, Casasola, F; Ramírez, BL; Giraldo, H; Gómez, ME; Llander, T; Velásquez, J; Ibrahim, M. 2008. Carbon stocks and sequestration. In: Carbon sequestration in tropical grassland ecosystems. Wagenigen Academic Publisher. Eds Mannetje, L; Amézquita, MC; Buurman, P. Ibrahim, M. NL. p. 49-68.

Gerber, PJ; Steinfeld, H; Henderson, B; Mottet, A; Opio, C; Dijkman, J; Falcucci, A; Tempio, G. 2013. Hacer frente al cambio climático a través de la ganadería: Evaluación global de las emisiones y las oportunidades de mitigación. FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura, IT). Roma, IT. Disponible en: www.fao.org/publications

Capítulo I.
Estrategias en alimentación y nutrición para disminuir las emisiones de metano entérico en los sistemas de producción de leche

Yosahandy Peña-Avelino², Cristóbal Villanueva³

1.1. Antecedentes

La ganadería genera 7,1 mil millones de CO₂, lo cual representa 15% del total de emisiones de gases de efecto invernadero (GEI) en el mundo. Cuarenta por ciento de la emisión total del sector ganadero corresponde al metano entérico y, de este monto, 77% tiene relación con la ganadería bovina (Gerber et ál. 2013).

En Costa Rica, la ganadería bovina emite 59% del total de GEI del sector agropecuario, cuyas principales fuentes son el metano entérico (62%) y el óxido nitroso (36%) (Chacón et ál. 2014). La emisión de metano es parte del proceso natural del tracto digestivo de los rumiantes (bovinos, cabras, ovejas y otros), y representa pérdida de energía e impacto para el ambiente. Por lo tanto, es importante identificar e implementar las estrategias de alimentación y nutrición con mayor potencial para reducir el metano entérico.

El presente capítulo abarca temas como la importancia de la ganadería bovina en los medios de vida de las familias, el impacto de la ganadería en la emisión de GEI,

² Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas (UAT), Carretera Victoria-Mante, km. 5., A. P. 263, 87000, Cd. Victoria, Tamaulipas, México. ypena@uat.edu.mx.
³ Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) Turrialba, Costa Rica. cvillanu@catie.ac.cr.
la anatomía y fisiología de los rumiantes, y las opciones con mayor potencial para reducir el metano entérico. El alcance del capítulo es la ganadería bovina de Costa Rica, con mayor enfoque en la ganadería de leche (doble propósito y especializada). Presenta resultados de investigaciones sobre opciones nutricionales que reducen dichas emisiones, con el fin de brindar información de apoyo para técnicos y extensionistas, tanto públicos como privados, y contribuye con una estrategia para el desarrollo de la ganadería baja en emisiones de GEI.

1.2. Aporte de la ganadería a los medios de vida de las familias

En Costa Rica, existen 45.780 fincas ganaderas, que ocupan 1.863.657 ha (35% del territorio nacional). La mayoría corresponden a explotaciones de agricultura familiar. Del inventario de fincas, 9.558 son unidades de producción de leche especializada, 17.398 son de doble propósito (leche y carne) y 18.824 son de carne. La actividad ganadera genera, directa e indirectamente, 250.000 empleos (14% de la fuerza laboral costarricense) a lo largo de la cadena de producción, por lo que constituye una importante fuente de ingresos para las familias involucradas (MAG/MINAE 2013).

El ganado es parte del capital financiero de las familias y, en muchos casos, es la única fuente de recursos financieros para gastos de emergencia en salud, educación e inversiones para mejorar las condiciones del hogar y de la finca. Además, la actividad ganadera contribuye a la seguridad alimentaria y nutricional, por medio de variados productos de origen animal (carne, leche y sus derivados) e ingresos por la venta de dichos productos.

Las exportaciones costarricenses de productos lácteos generan materia prima para producir leche fluida, leche en polvo, leche saborizada y deslactosada, yogurt, helados, quesos y mantequilla. En 2014, la Cámara Nacional de Productores de Leche indicó que las exportaciones de productos lácteos fueron de 92 millones de kg, con un valor total de 158 millones de dólares —un incremento de 20,6% en volumen y 17,6% en el valor de exportación, en comparación con las cifras del año 2013. El sector lechero aporta al PIB agropecuario 9,9% (SEPSA 2014).
1.3. Ganadería y emisión de GEI

1.3.1. Fuentes de emisión de GEI
La actividad ganadera está relacionada con la emisión de los principales GEI en la atmósfera, tales como dióxido de carbono (CO$_2$), óxido nitroso (N$_2$O) y metano (CH$_4$) (IPCC 2007). El óxido nitroso y el metano son gases potentes; presentan 298 y 25 veces, respectivamente, mayor potencial de calentamiento global que el dióxido de carbono, en una escala de 100 años (Gao et ál. 2014). En otras palabras, el metano absorbe 25 veces más calor que el dióxido de carbono.

Las fuentes de emisión del CO$_2$ son los combustibles para producir energía, como el carbón, el petróleo y el gas natural, así como el cambio de uso de la tierra; por ejemplo, al convertir bosques en áreas de cultivo o pasturas para alimentar animales en pastoreo (IPCC 2007). En Costa Rica, la principal fuente de emisión de CO$_2$ se deriva del uso de combustibles fósiles en maquinarias agrícolas, equipos (p. ej., picadoras y bombas de riego) y vehículos.

Las fuentes de emisión del metano son la descomposición de la materia orgánica, la fermentación entérica y el estiércol. En fincas ganaderas, la principal fuente es la fermentación entérica, que es un proceso natural de la fisiología de los rumiantes y se puede reducir al mejorar la calidad de la dieta. Este tema será ampliado en una sección posterior en este capítulo.

El óxido nitroso, por su parte, se produce de forma natural en el suelo por procesos biológicos (nitrificación y desnitrificación). Este gas se deriva del nitrógeno contenido en el estiércol y de los fertilizantes químicos. Ambos representan pérdidas de nitrógeno, de energía y de materia orgánica, las cuales afectan la productividad de los sistemas pecuarios (Griltrap et ál. 2013).

1.3.2. Emisión de GEI y cambio climático
Los GEI absorben la radiación que emite la tierra y atrapan el calor, impidiendo que la energía atraviese al espacio. Permanecen en la atmósfera durante mucho tiempo, lo que conlleva a cambios drásticos en el planeta, tales como incremento en la temperatura, variabilidad de las lluvias (en algunos lugares lloverá menos y en otros, lloverá en exceso) y mala distribución en el tiempo y espacio (Frohmann y Olmos 2013). Lo anterior es de gran preocupación ambiental porque los escenarios muestran consecuencias catastróficas: desde extinción de especies de animales...
y vegetales en zonas tropicales, hasta derretimiento de glaciales, desertificación y problemas para el abastecimiento de alimentos debido a la dificultad de establecer cultivos libres de plagas y resistentes a sequías (IPCC 2007).

La ganadería se relaciona con el cambio climático de dos maneras: 1) es una fuente emisora de GEI (principalmente, metano entérico), por lo que contribuye al calentamiento global, con las consecuencias descritas anteriormente; y 2) el cambio climático afecta la producción ganadera, al haber menos disponibilidad y menor calidad de alimento a lo largo del año, falta de agua para consumo y para el crecimiento de los pastos y forrajes, presencia de plagas en pastos, y mayor efecto de parásitos internos y externos del ganado. Un ejemplo reciente es la prolongación de la época seca en Guanacaste, que ha causado un incremento en los costos de producción de las fincas por alimentación y muerte de ganado.

1.3.3. Inventario de GEI en Costa Rica

Según el último inventario nacional de GEI para el año 2010, la ganadería bovina de Costa Rica emite 3.317.000 tCO₂e, que representan 23,6% del total de emisiones nacionales. Además, es responsable de 59% de las emisiones del sector agropecuario (Chacón et ál. 2014).

En el subsector de ganadería bovina, los principales GEI son el metano entérico (62%) y el óxido nitroso (36%) (Chacón et ál. 2014). Esto significa que las opciones de mitigación deben enfocarse en reducir ambos gases por medio del mejoramiento de la calidad de la dieta, selección de animales de mayor producción para reducir inventario, y planes sobre fertilización de precisión y evaluación de opciones de fuentes nitrogenadas de lenta liberación. Sobre este último tema, Montenegro (2013) ha publicado experiencias en pasturas de sistemas de producción de leche en Costa Rica.

1.3.4. Huella de carbono en el sector ganadero

La huella de carbono es un indicador de la cantidad de GEI (dióxido de carbono, metano y óxido nitroso) emitidos por unidad de producto producido a lo largo de la cadena de producción, cuya unidad de medida son “toneladas de dióxido de carbono equivalente” (tCO₂e)⁴ (CEPAL 2010).

⁴ tCO₂e: unidad de medida para indicar el potencial de calentamiento global. Los GEI distintos del CO₂ son convertidos a su valor de “dióxido de carbono equivalente” (CO₂e).
En los últimos años, los productos de exportación (como la carne y los lácteos) han tenido un importante crecimiento y se destinan a países industrializados (China, Estados Unidos y países en la Unión Europea). Las demandas de esos mercados y la competencia con otros países han sido factores que han estimulado las actividades relacionadas con el cálculo de la huella de carbono (Cuadro 1).

Cuadro 1. Iniciativas de algunos países para determinar la huella de carbono en alimentos

<table>
<thead>
<tr>
<th>País</th>
<th>Indicador</th>
<th>Sectores</th>
<th>Propósito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina, Chile, Colombia y Uruguay</td>
<td>Factores de emisión de metano</td>
<td>Carnes bovinas</td>
<td>Herramienta política pública</td>
</tr>
<tr>
<td>Uruguay</td>
<td>Huella de carbono</td>
<td>Carnes, lácteos y arroz</td>
<td>Herramienta política pública</td>
</tr>
</tbody>
</table>

Fuente: Adaptado de Frohmann y Olmos 2013.

El cálculo y la reducción de la huella de carbono en los distintos sectores productivos impulsan la eficiencia y competitividad internacional, y diferencian a sus productos en mercados altamente competitivos y relacionados con el desarrollo sustentable y la eficiencia energética. Además, presentan una oportunidad para detectar ineficiencias en los procesos productivos de las empresas. Aunque incorporar el cálculo y la reducción de la huella de carbono requiere de un gran esfuerzo, las oportunidades de ganancias económicas pueden compensarlo (Frohmann y Olmos 2013).

1.3.5. Anatomía y fisiología del aparato digestivo

El ganado bovino proporciona alimento al ser humano, con alto contenido de proteína, grasa e hidratos de carbono, a través de productos como la carne y la leche. El ganado obtiene la mayoría de los nutrientes de alimentos ricos en fibra, presentes en henos, ensilados y pastos. El estómago del ganado (Figura 1) está provisto de cuatro compartimentos (retículo, rumen, omaso y abomaso), que lo diferencian de un animal de estómago simple. Los procesos adaptativos en el estómago de los rumiantes (ovinos, caprinos y bovinos) les permite tener una gran capacidad de consumo y digerir la fibra de las plantas, a diferencia de otros animales, como aves y cerdos (Ramírez 2002; Hill y Wyse 2006).
Figura 1. Compartimentos que conforman el estómago de los rumiantes

En el retículo-rumen existe una gran cantidad de microorganismos, como bacterias, hongos y protozoarios, con diferente capacidad de trabajo bioquímico, lo que origina una biota diversa con respecto al uso de nutrientes (proteínas, lípidos carbohidratos y vitaminas). Los productos finales de la fermentación, llamados ácidos grasos volátiles de cadena corta (AGV: ácido acético, propiónico y butírico) se absorben a través de la pared del rumen. Además, produce gases, como el metano, que son eliminados a través de flatulencias y eructos (más de 95% por este medio). Esto varía según especie y categoría animal (Cuadro 2).
Cuadro 2. Emisión de metano según categoría animal en distintos sistemas de producción ganaderos en Costa Rica (kg de metano/animal/año)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Carne</th>
<th>Leche</th>
<th>Doble propósito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terneros</td>
<td>19,48</td>
<td>20</td>
<td>16,81</td>
</tr>
<tr>
<td>Hembras en crecimiento</td>
<td>63,61</td>
<td>48,69</td>
<td>41,91</td>
</tr>
<tr>
<td>Machos en crecimiento</td>
<td>66,25</td>
<td>-</td>
<td>70,16</td>
</tr>
<tr>
<td>Hembra adulta</td>
<td>85,80</td>
<td>85</td>
<td>85,67</td>
</tr>
<tr>
<td>Macho adulto</td>
<td>111,70</td>
<td>111,70</td>
<td>111,70</td>
</tr>
</tbody>
</table>

Fuente: IMN 2014

El retículo-rumen puede absorber compuestos alimenticios debido a las papilas que le dan un aspecto de alfombra. La ausencia de aire en el rumen crea un ambiente propicio para el desarrollo de microorganismos (bacterias, hongos y protozoarios) capaces de utilizar la fibra de las plantas para alimentarse y reproducirse, al mismo tiempo que fermentan los productos que son fuente de energía para el rumiante (Ramírez 2002; Kawas et ál. 2007). Por esta razón, los rumiantes tienen la capacidad de aprovechar los forrajes, al contrario de otros vertebrados de estómago simple. Otra función importante de estos microorganismos es sintetizar algunos aminoácidos esenciales y las vitaminas de los complejos B y K, en cantidades suficientes para cubrir las necesidades de los bovinos (Hill y Wyse 2006).

Existen unas 200 especies de bacterias en el rumen, clasificadas según el tipo de sustrato sobre el que actúan (almidón, celulosa, etc.) o el producto que generan (ácido láctico, butirato, metano, etc.). Las bacterias metanogénicas son arqueas difíciles de aislar, que convierten el CO$_2$, H$_2$, formato y acetato en el rumen, en metano o metano y CO$_2$. Estas bacterias están representadas por *Methanobacterium*, *M. formicicum*, *M. suboxidans*, *Methanospirillum hungatii*, y *Methanosarcina*, entre otras (Parés y Juárez 2002).

Es posible manipular los microorganismos ruminales y predecir los productos de fermentación en el rumen. Al incluir alimentos altos en fibra, se favorece el crecimiento de bacterias que actúan sobre la celulosa y hemicelulosa (fibra) para producir, principalmente, ácido acético. Estas bacterias crecen en pH neutros (6,2 a 7,0) (Brask et ál. 2013). En cambio, si se incluyen concentrados en la dieta, se tendrá una población ruminal diferente (bacterias que usan almidón de los cereales), y el
producto de la fermentación será el ácido propiónico. Dependiendo de la inclusión de concentrado, el pH declinará, disminuyendo la población de bacterias que usan la fibra y de protozoarios ruminales, en un ambiente que favorece la reducción de metano.

El omaso, con forma de esfera, recicla los nutrientes (p. ej., agua, sodio y fósforo). El abomaso (o estómago verdadero) secreta enzimas digestivas proteolíticas y ácido clorhídrico; además, es el lugar donde se realiza la digestión de algunos alimentos que no se fermentan en el retículo-rumen (Arreaza et ál. 2002).

1.4. Opciones para reducir el metano entérico en los sistemas ganaderos

En Costa Rica, el metano entérico representa 62% de las emisiones totales de GEI de la ganadería bovina. Similar tendencia presentan la mayoría de los países de América Latina y el Caribe. Esto significa que las estrategias de reducción de emisiones de GEI deben enfocarse en la identificación de opciones que disminuyan las emisiones de metano entérico y mejoren los indicadores de las fincas ganaderas en cuanto a productividad, ingresos y resiliencia ante la variabilidad climática.

Los sistemas de producción de leche de Costa Rica tienen el reto de mejorar la competitividad e intensidad de emisiones de metano entérico.
Las opciones para reducir las emisiones varían en su impacto. El presente capítulo está enfocado en las opciones que presentan un impacto de medio a alto en la reducción de metano entérico, aunque la mayoría de hallazgos reporta un nivel de impacto medio (Cuadro 3). Las estrategias de alto impacto implican el uso de inhibidores (cloroformo) y aceptores de electrones (nitrato), y la reducción del tamaño del hato (Hristov et ál. 2013). El cloroformo y el nitrato resultan ser tóxicos, por lo que se debe tener un período de adaptación previo para evitar intoxicar al animal. Además, en algunos lugares es difícil reducir el tamaño del hato, pero se pueden mejorar los parámetros productivos y reproductivos para una mayor eficiencia del ganado.

Cuadro 3. Estrategias de alimentación y aditivos no nutricionales con mediano y alto potencial de mitigación del metano entérico en fincas ganaderas

<table>
<thead>
<tr>
<th>Práctica</th>
<th>Efecto potencial de mitigación</th>
<th>Eficacia</th>
<th>Efecto a largo plazo</th>
<th>Seguridad para el animal o el ambiente</th>
<th>Insumos requeridos</th>
<th>Aplicabilidad en regiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceptores de electrones</td>
<td>Medio a alto</td>
<td>¿Sí?</td>
<td>No</td>
<td>¿Sí?</td>
<td>Sí</td>
<td>Todas</td>
</tr>
<tr>
<td>Lípidos</td>
<td>Medio</td>
<td>Sí</td>
<td>¿No?</td>
<td>Sí</td>
<td>¿Sí?</td>
<td>Todas</td>
</tr>
<tr>
<td>Inclusión de concentrado en la ración</td>
<td>Medio</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>¿Sí?</td>
<td>Todas</td>
</tr>
<tr>
<td>Calidad del forraje</td>
<td>Medio</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Todas</td>
</tr>
<tr>
<td>Alimentación de precisión</td>
<td>Medio</td>
<td>¿Sí?</td>
<td>Sí</td>
<td>Sí</td>
<td>¿Sí?</td>
<td>Todas</td>
</tr>
</tbody>
</table>

“¿?” = incertidumbre por información limitada debido a la falta de datos o resultados inconsistentes; medio = efecto medio de mitigación, de 10 a 30% (Gerber et ál. 2013; Hristov et ál. 2013).

Es importante destacar que existen otras opciones con un efecto de mitigación bajo pero que, según los estudios que se llevan a cabo, podrían reducir el metano entérico en el futuro. Entre estas opciones se pueden mencionar los ionóforos (monensina sódica), los compuestos secundarios presentes en plantas forrajeras (taninos y saponinas), la manipulación del rumen con arqueas y bacterias (vacunas), y las enzimas exógenas (levaduras).
En la siguiente sección se muestran estudios de caso de las estrategias de alimentación y aditivos, en los cuales la prioridad fue mostrar las experiencias locales en Costa Rica. Sin embargo, donde no se obtuvo información, se optó por mostrar otros estudios publicados a nivel mundial.

1.4.1. Aceptores de electrones
Entre los aceptores de electrones más estudiados se encuentran el fumarato \((\text{C}_4\text{H}_4\text{O}_4)\), los nitratos \((\text{NO}_3)\), los sulfatos \((\text{SO}_4^{2-})\) y el nitroetano \((\text{C}_2\text{H}_5\text{NO}_2)\). Los más promisorios son los nitratos y el nitroetano.

Los nitratos son fuente de nitrógeno fermentable en el rumen e incrementan la eficiencia del crecimiento microbiano; sin embargo, se debe tener cuidado con el nivel de ingestión del nitrato puesto que, al ser tóxico, puede poner en riesgo la salud del animal. El uso de nitratos en algunos experimentos ha logrado disminuir el metano hasta en 50%; no obstante, aún no está claro su efecto a largo plazo.

En los países en desarrollo, la cantidad de nitratos por fertilización de pasturas es mínima y la proteína es insuficiente para mantener la producción animal. El uso de fuentes nitrogenadas puede reducir la producción de metano y mejorar la producción animal. Los bovinos consumen nitratos a través de forrajes fertilizados (p. ej., el ensilaje de maíz puede alcanzar de 2 a 3% de nitratos), lo cual debe considerarse cuando se quieran incorporar dosis complementarias de nitrato en la dieta, para evitar posibles intoxicaciones (Hristov et ál. 2013). También es posible sustituir la urea por nitratos en bloques nutricionales, considerando horas de uso y de restricción (Cockwill et ál. 2000).

De igual forma, Brown et ál. (2011) observaron una disminución de 24 a 26% de metano con dosis orales de nitroetano (60 y 120 mg/kg de peso vivo de novillos Holstein), que fueron administradas por medio de una sonda durante ocho días, dos veces al día (a las 08:00 y 16:00 horas). La incorporación de sulfatos con nitratos parece tener un efecto acumulativo en la dieta; sin embargo, algunos investigadores mencionan el riesgo de provocar enfermedades (como la poliencefalomalacia) por un exceso de azufre (Schoomaker y Beitz 2012).
La incorporación de los otros aceptores de electrones ha sido cuestionada porque presenta resultados inconsistentes; además, la reducción de metano ha sido más baja que las reducciones mencionadas para nitratos y nitroetano (Ungerfeld et ál. 2007).

Estudio de caso: Persistencia de mitigación de metano en vacas lecheras que consumieron dietas suplementadas con nitrato

Van Zijderveld et ál. (2011)

En los Países Bajos de Europa, se condujo un experimento con el fin de evaluar el efecto de la inclusión de nitrato como suplemento alimenticio, en sustitución de la urea. Para ello, se usaron 20 vacas lactantes Holstein-Friesian, alimentadas con una dieta totalmente mezclada (basada en ensilaje de maíz, en una relación de forraje concentrado de 66:34), que contenía urea o nitrato (21g de nitrato/kg de materia seca). Los animales fueron asignados en bloques, según el número de partos, producción de leche y estadio de lactancia.

Hubo cuatro periodos de evaluación, de 24 días cada uno, y un periodo de adaptación de cuatro semanas, con el fin de disponer de animales adaptados a la urea y al nitrato. El nitrato tuvo un efecto persistente en la disminución de la emisión de metano por kg de leche de 14% durante el periodo de evaluación. Se obtuvo una mejor conversión de energía de la dieta, pero no se observaron diferencias muy marcadas en la producción de leche (Cuadro 4), para lo cual faltarían estudios para mejorar los indicadores. Es importante considerar un periodo de adaptación adecuado al nitrato para disminuir la posibilidad de intoxicación en los animales.
Cuadro 4. Consumo de materia seca, producción de leche y emisión de metano

<table>
<thead>
<tr>
<th></th>
<th>Período 1</th>
<th>Período 2</th>
<th>Período 3</th>
<th>Período 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea</td>
<td>Nitrato</td>
<td>Urea</td>
<td>Nitrato</td>
</tr>
<tr>
<td>Consumo de materia seca, kg/d</td>
<td>17,9</td>
<td>18</td>
<td>19,1</td>
<td>19,7</td>
</tr>
<tr>
<td>Producción de leche, kg/d</td>
<td>27,9</td>
<td>28,3</td>
<td>27,4</td>
<td>28,3</td>
</tr>
<tr>
<td>Metano, g/kg de consumo de materia seca</td>
<td>19,1</td>
<td>15,8</td>
<td>19,6</td>
<td>15,9</td>
</tr>
<tr>
<td>Metano, g/kg de leche</td>
<td>11,8</td>
<td>10,4</td>
<td>13,3</td>
<td>11,5</td>
</tr>
<tr>
<td>Metano, % de consumo de energía bruta</td>
<td>5,7</td>
<td>4,7</td>
<td>5,7</td>
<td>4,7</td>
</tr>
</tbody>
</table>

Grasa y proteína corregida por leche.

1.4.2. Lípidos

Los aceites de girasol, almendra, semilla de algodón, coco y linaza son ingredientes alimenticios que, en las dietas altas en forrajes, pueden disminuir la emisión de metano hasta 50% (Chuntrakort et ál. 2014). Estos aceites tienen efectos sobre los parámetros de fermentación a nivel del rumen (Chung et ál. 2011). Las emisiones de metano se reducen debido al efecto tóxico directo de los ácidos grasos en los microrganismos metanogénicos del rumen y a la hidrogenación de éstos (biohidrogenación ruminal), que compite por el uso del hidrógeno con las bacterias metanogénicas.

Asimismo, los ácidos grasos provenientes de la ingestión de alimentos (como las oleaginosas) pueden suprimir las emisiones de gas metano. Sin embargo, aún se discute cuáles son los de mayor eficacia: si los ácidos grasos saturados o los poliinsaturados. Por ejemplo, los granos de destilería de maíz desecados conocidos como DDGS (oleaginosas) son fuentes importantes de lípidos (no solo en ganadería) y una materia prima de amplio uso, como ingrediente del concentrado o adicionado (Grainger y Beachemin, 2011).
Patra et ál. (2013) observaron una mayor efectividad con los ácidos polinsaturados al realizar un metaanálisis de 27 trabajos. No obstante, los resultados en diversos estudios muestran que las grasas saturadas también disminuyen las emisiones de metano. Grainger y Beauchemin et ál. (2011) también realizaron un metaanálisis de 27 trabajos. Concluyeron que aumentar 10 g de grasa por kg de materia seca en la dieta disminuye el gas metano en 1 g/kg de alimento consumido en vacas lecheras y 2,6 g/kg de alimento consumido en ovejas.

Estudio de caso: Efecto del aceite de coco en el consumo, la digestión de nutrientes y la producción de metano en ovinos alimentados con forraje y concentrado

Delgado et ál. (2013)

La cantidad de emisiones de metano puede ser regulada a través de modificadores de la fermentación ruminal. El aceite de coco tiene un alto contenido de ácidos grasos, fundamentalmente, ácidos mirístico, palmítico, esteárico, oleico y linoleico (Kobayashi 2010). Su contenido de ácidos grasos saturados es de aproximadamente 90%, lo que propicia que sea una de las fuentes más utilizadas para reducir la metanogénesis ruminal. El objetivo del estudio fue evaluar el efecto de la inclusión del aceite de coco en la dieta de ovinos Pelibuey, alimentados con forraje de baja calidad y concentrado. Las dietas se formularon en una relación 50:50, con el aceite de coco en el concentrado (14%) o sin él. Se usaron cuatro ovinos fistulados, con un peso vivo promedio de 25 kg. El forraje base fue Pennisetum purpureum Clon Cuba CT-169, con 120 días de edad.

El estudio comprendió dos períodos, cada uno de ellos con 12 días de adaptación a las dietas experimentales, cinco días de colección de heces y dos días para determinar la producción de metano. Los resultados indicaron una disminución en el consumo de la materia seca y la materia orgánica; sin embargo, la digestibilidad aparente de la materia orgánica no mostró diferencias. La producción de metano (l/kg de materia seca ingerida) se redujo en 35% con el uso del aceite de coco en la dieta (Cuadro 5). Los autores indican que existe un efecto indirecto en la metanogénesis, debido a la reducción de protozoarios en el rumen, los cuales mantienen relaciones simbióticas con los microorganismos metanógenos.
Cuadro 5. Efecto de la inclusión de aceite de coco en la emisión de metano en ovinos alimentados con dietas de forraje y concentrado

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Aceite de coco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo de materia seca</td>
<td>1,06</td>
<td>0,70</td>
</tr>
<tr>
<td>Consumo de materia orgánica</td>
<td>0,93</td>
<td>0,65</td>
</tr>
<tr>
<td>Digestibilidad aparente de la materia orgánica</td>
<td>56,37</td>
<td>64,18</td>
</tr>
<tr>
<td>Metano, l/día por materia seca ingerida</td>
<td>18,73</td>
<td>12,16</td>
</tr>
<tr>
<td>Metano, l/kg peso vivo</td>
<td>0,48</td>
<td>0,36</td>
</tr>
<tr>
<td>Metano, l/kg peso vivo0.75</td>
<td>1,12</td>
<td>0,88</td>
</tr>
</tbody>
</table>

Fuente: Adaptado de Delgado et ál. (2011)

1.4.3. Inclusión de concentrado en la dieta

Al incrementar la tasa de pasaje a nivel rumen y acidificar el pH del líquido ruminal, se modifican los parámetros ruminales. Además, se da un cambio en la relación de forraje: el concentrado modifica la concentración del pH, es decir, a mayor consumo de forraje, el pH estará cercano a la neutralidad y los protozoarios ruminales se mantendrán en concentraciones normales. En cambio, con una mayor proporción de concentrados (granos o alimentos energéticos) en la dieta, el pH declinará (5,8) y se producirán cambios en los microorganismos ruminales, de bacterias celulolíticas y hemicelulolíticas a bacterias amilolíticas y defaunación de protozoarios. A la vez, se disminuye la relación de acetato: propionato y la cantidad de metano producido (Posada-Ochoa et ál. 2014). En consecuencia, las poblaciones microbiales se modifican, propiciando la defaunación de protozoarios y una mayor cantidad de bacterias amilolíticas.
La suplementación estratégica con concentrados contribuye a mejorar la producción de leche y a reducir la intensificación de emisiones de metano entérico.

La inclusión de concentrado en la dieta ayuda a disminuir la emisión de metano entérico por unidad de producto, especialmente, cuando el consumo del concentrado está por encima de 40%. Asimismo, se mejora la producción de leche o carne y el contenido de grasa de la leche. Sin embargo, el consumo de pasturas de buena calidad no debe sustituirse por concentrado. En muchas partes del mundo, la inclusión de concentrados no es una alternativa de mitigación económicamente viable, ya que la mayoría de ingredientes son importados. Además, el grano de maíz (*Zea mays*) es un componente importante en los concentrados y compite con la alimentación humana de algunas poblaciones de Mesoamérica, como México, Guatemala, Nicaragua y El Salvador (Hristov et ál. 2013).
El objetivo del estudio fue conocer el efecto de las prácticas de alimentación en las emisiones de metano entérico y en los ingresos sobre los costos de alimentación en fincas de lechería especializada. El estudio se realizó en 104 fincas asociadas a la cooperativa Dos Pinos; las cuales, por medio de un análisis de conglomerados, fueron clasificadas en cuatro grupos, según la estrategia de alimentación (porcentajes de alimentos que componen la ración). Las emisiones de metano entérico (g/kg de leche CPG) fueron menores en las estrategias de alimentación que usaron más concentrado, menos pastos y forrajes, y más digestibilidad in vitro de la materia seca (Cuadro 6).

Los ingresos sobre los costos de alimentación fueron similares entre estrategias. El concentrado representó los mayores costos de alimentación en todas las estrategias (más de 50%). Las estrategias de alimentación influyeron en las emisiones de GEI y en los costos de alimentación; sin embargo, es necesario identificar y evaluar nuevas estrategias con alimentos locales que ofrezcan mayores ingresos sobre costos de alimentación y reducción en las emisiones de metano entérico y otros GEI. Además, se debe considerar que las estrategias de alimentación contribuyen a que la finca tenga una mayor resiliencia a la variabilidad climática y a los cambios de los precios de los agroinsumos en el mercado.

Cuadro 6. Emisión de metano entérico e ingresos según la estrategia de alimentación en sistemas de producción de leche especializada

<table>
<thead>
<tr>
<th>Estrategia</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición de la dieta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pastos y forrajes (%)</td>
<td>73</td>
<td>69,4</td>
<td>54,3</td>
<td>27,8</td>
</tr>
<tr>
<td>Concentrado (%)</td>
<td>23</td>
<td>26</td>
<td>37</td>
<td>26</td>
</tr>
<tr>
<td>Subproductos de la agroindustria **</td>
<td>4,1</td>
<td>4,4</td>
<td>7,8</td>
<td>46,0</td>
</tr>
<tr>
<td>Calidad de la dieta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteína cruda (%)</td>
<td>12,3</td>
<td>12,9</td>
<td>13,5</td>
<td>10,5</td>
</tr>
<tr>
<td>DIVMS (%)</td>
<td>70,0</td>
<td>71,1</td>
<td>73,3</td>
<td>75,7</td>
</tr>
<tr>
<td>Emisión de metano entérico (g/kg de leche CPG)*</td>
<td>22,0</td>
<td>20,0</td>
<td>18,0</td>
<td>18,0</td>
</tr>
<tr>
<td>Ingreso sobre costos de alimentación (USD/vaca/día)***</td>
<td>4,56</td>
<td>4,62</td>
<td>4,91</td>
<td>3,31</td>
</tr>
</tbody>
</table>

*CPG: corregida por contenido de proteína y grasa. **Cáscara de piña, cáscara de banano, banano rechazado, cáscara de yuca, cascarilla de soya, etc. ***Tasa de cambio 1 USD = 540 colones costarricenses, diciembre 2014.

Fuente: Adaptado de Iñamagua (2014)
1.4.4. Calidad del forraje

La calidad de los pastos y forrajes y el aprovechamiento de los nutrientes en las dietas por parte de los animales constituyen una práctica eficaz para disminuir las emisiones de GEI por unidad de producto animal. Una mejor calidad de los forrajes incrementa la digestibilidad de la dieta para rumiantes. Las emisiones de metano pueden disminuir cuando se sustituye el ensilado de pastos por ensilado de maíz (DEFRA 2010). A través del tiempo, se madura el forraje y, con ello, se incrementa el contenido de fibra. Lo anterior provoca una reducción en la digestibilidad de la dieta y en la tasa de pasaje, produciendo más ácido acético y metano (Brask et ál. 2013).

La disponibilidad y calidad de las pasturas mejora la eficiencia económica y la producción, con bajas emisiones de metano entérico en las fincas lecheras.

En estudios en los que se han suplementado vacas con 25% de *Leucaena leucocephala* como parte de la ración, se observaron incrementos en las poblaciones de bacterias celulolíticas y reducciones de la población de protozoos ruminales simbiontes con las bacterias que producen metano (Galindo et ál. 2008). Por otra parte, Montenegro y Abarca (2001) indican que el pasto kikuyo (*Pennisetum clandestinum*) presenta
una mayor eficiencia en la producción de leche, en comparación con el pasto estrella africana (*Cynodon nlenfuensis*). Explican que esto se debe, en gran parte, a la menor producción de metano asociado a la calidad del pasto; es decir, existe una mayor eficiencia en el uso de la energía que provee el alimento consumido.

Las asociaciones entre leguminosas y gramíneas pueden favorecer la disminución de los GEI, ya que las leguminosas tienen un mayor contenido de proteína cruda, fibra y metabolitos secundarios, como los polifenoles (taninos), que aumentan la digestibilidad de la dieta y el consumo del forraje digestible, contribuyendo a la disminución de emisiones por unidad de producto.

Estudio de caso: Evaluación de la producción de leche y metano entérico en vacas Holstein-Friesian que consumieron ensilaje de maíz o ensilaje de pastos

Van Gastelen et ál. (2015)

La mitigación de GEI se puede realizar mediante el uso de suplementos basados en almidones o pastos molidos con leguminosas, o mediante el ensilaje. El objetivo de este estudio fue determinar el efecto de remplazar el ensilaje de pastos por ensilaje de maíz en las dietas de vacas lecheras, evaluando la producción láctea y los ácidos grasos en la leche, así como la emisión de metano.

Se usaron 32 vacas Holstein-Friesian para cuatro tratamientos experimentales que mantuvieron la relación de forraje y concentrado en 80:20, en base seca. El forraje estuvo compuesto por 100% de ensilaje de pastos (EP100); 67% de ensilaje de pastos y 33% de ensilaje de maíz (EP67); 33% de ensilaje de pastos y 67% de ensilaje de maíz (EP33); y 100% de ensilaje de maíz (EP0). Sin embargo, la inclusión de ensilaje de maíz incrementó el consumo de almidón a expensas del consumo de fibra detergente neutro. La emisión de metano disminuyó conforme se incrementó la proporción de ensilaje de maíz (Cuadro 7). Los autores señalan que la reducción de las emisiones de GEI fue de 8% (g/kg de leche corregida por grasa y proteína).
Cuadro 7. Producción y composición de leche y emisión de metano de vacas Holstein alimentadas con niveles crecientes de ensilaje de maíz

<table>
<thead>
<tr>
<th>Tratamientos experimentales</th>
<th>EP100</th>
<th>EP67</th>
<th>EP33</th>
<th>EPS0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción de leche (CPG)</td>
<td>24</td>
<td>24,9</td>
<td>25,7</td>
<td>25,6</td>
</tr>
<tr>
<td>Contenido de proteína en leche (%)</td>
<td>3,44</td>
<td>3,49</td>
<td>3,34</td>
<td>3,67</td>
</tr>
<tr>
<td>Contenido de lactosa en leche (%)</td>
<td>4,39</td>
<td>4,55</td>
<td>4,60</td>
<td>4,61</td>
</tr>
<tr>
<td>Metano (g/kg de leche CPG)</td>
<td>16,6</td>
<td>17</td>
<td>16,2</td>
<td>15,3</td>
</tr>
</tbody>
</table>

1CPG: leche corregida por contenido de proteína y grasa = (0,337 + 0,116 x grasa% + 0,06 x proteína %).

1.4.5. Nutrición de precisión

La adopción de esta práctica permite maximizar la producción y utilización de los nutrientes contenidos en los alimentos y, por lo tanto, disminuye las emisiones de GEI. El objetivo es usar los recursos naturales de una manera más sostenible, con ahorros económicos por concepto de rechazo de alimento en los comederos y una menor prevalencia de enfermedades metabólicas, mejorando la eficiencia animal a través de incrementos en peso y producción láctea. Requiere análisis químicos periódicos para satisfacer los requerimientos de los animales mediante dietas totalmente mezcladas. Estos análisis son fundamentales, sobre todo en los sistemas intensivos, a pesar de su costo e infraestructura (Hristov et ál. 2013).

La formulación de raciones también se puede realizar usando información local o regional, a partir de bases de datos de calidad nutricional de los alimentos. Las raciones deben ajustarse en el tiempo para satisfacer la demanda nutricional del ganado y buscar la mejor relación costo-beneficio (p. ej., por cambios de estaciones climáticas o cambios en la composición de la dieta por disponibilidad, precio o restricciones sanitarias).
Estudio de caso: Alimentación equilibrada para incrementar la productividad ganadera – Aumento de la producción lechera y de la eficiencia en el uso de nutrientes y reducción de las emisiones de metano
Garg (2012)

La alimentación de precisión (también llamada “alimentación balanceada”) permite lograr mayor productividad animal con ventajas importantes, ya que el animal recibe la ración que ocupa consumir en un estado fisiológico específico (p. ej., crecimiento, mantenimiento, lactancia —inicial, intermedia y final).

En un ensayo piloto, el National Dairy Development Board (NDDB) de India implementó un programa y creó un software para facilitar a los productores ganaderos el acceso a raciones balanceadas para su ganado en diferentes estados fisiológicos. Las raciones consistieron en alimentos, minerales locales y concentrados. El programa asignó maestros en nutrición que disponían de un equipo de cómputo con el software y la información de la composición química de los ingredientes locales.

El programa se ejecutó en siete localidades y generó información de aproximadamente 11.500 animales. Los resultados obtenidos, después de cuatro meses de evaluación, mostraron un incremento en la productividad animal, una disminución de costos en alimentación y menores emisiones de metano. Además, el ingreso neto por productos lácteos aumentó 15%, gracias a una mayor producción de leche y a una disminución en los costos de alimentación (Cuadro 8).

La eficiencia en la producción de leche indica mayor cantidad de leche por kilogramo de alimento al usar dietas balanceadas. La emisión de metano de los animales bajó de 15 a 20%, después de cuatro meses de alimentación, con una ración balanceada. La alimentación por medio de raciones balanceadas permite el uso eficiente de los recursos naturales de las regiones para maximizar la producción animal, aumentar los ingresos y reducir las emisiones de metano entérico.
Cuadro 8. Emisiones de metano en diferentes regiones de la India

<table>
<thead>
<tr>
<th>Región</th>
<th>Balance de ración</th>
<th>Consumo (kg MS/d)</th>
<th>Producción de leche (kg/d)</th>
<th>Grasa (%)</th>
<th>Metano (g/vaca/día)</th>
<th>Metano (g/kg leche)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oeste</td>
<td>No</td>
<td>12,5</td>
<td>10,5</td>
<td>4,3</td>
<td>238</td>
<td>22,7</td>
</tr>
<tr>
<td></td>
<td>Sí</td>
<td>12,2</td>
<td>11</td>
<td>4,6</td>
<td>206</td>
<td>18,8</td>
</tr>
<tr>
<td>Norte</td>
<td>No</td>
<td>9,4</td>
<td>4,9</td>
<td>4,2</td>
<td>196</td>
<td>39,5</td>
</tr>
<tr>
<td></td>
<td>Sí</td>
<td>9,7</td>
<td>5,5</td>
<td>4,4</td>
<td>174</td>
<td>31,5</td>
</tr>
<tr>
<td>Sur</td>
<td>No</td>
<td>10,5</td>
<td>8,4</td>
<td>4,1</td>
<td>187</td>
<td>22,2</td>
</tr>
<tr>
<td></td>
<td>Sí</td>
<td>11,6</td>
<td>8,8</td>
<td>4,1</td>
<td>166</td>
<td>18,8</td>
</tr>
</tbody>
</table>

1.5. Consideraciones

En Costa Rica, los principales GEI en el subsector de ganadería bovina son el dióxido de carbono, el metano y el óxido nitroso. El metano entérico es el de mayor emisión (62%), por lo que las opciones de mitigación deben enfocarse en su reducción. Existen varias opciones para reducir las emisiones de metano entérico. Las de mayor potencial de mitigación son: el uso de nitrógeno no proteico (nitratos y nitroetano); el uso de lípidos; la inclusión de concentrados en la ración; el mejoramiento de la calidad de pastos y forrajes; y la nutrición de precisión (formulación de raciones).

Es necesario identificar y evaluar nuevas estrategias con alimentos locales, que ofrezcan mayores ingresos sobre costos de alimentación y reducción en las emisiones de metano entérico y otros GEI, ya que la actividad ganadera en Costa Rica es el principal medio de vida de al menos 250.000 familias, y contribuye con la seguridad alimentaria y nutricional.
Referencias

Arreaza, T LC; Sánchez, ML; Pardo, BO; Reza, GS; Becerra, J; Dorado, JC; Suárez, L. 2002. Nutrición y alimentación de bovinos en el Trópico Bajo Colombiano. En: Plan de modernización tecnológica de la ganadería bovina colombiana. Cundinamarca, CO. 52 p.

Chacón, AAR; Jiménez, VG; Montenegro, BJ; Sasa, MJ; Blanco, SK. 2014. Inventario nacional de gases de efecto invendero y absorción de carbono. MINAE (Ministerio de Ambiente y Energía, CR); Instituto Meteorológico Nacional (IMN, CR). San José, CR.

Cockwill, CL; McAllister, TA; Olson, ME; Milligan, DM; Ralston, BJ; Huisma, C; Hand, RK. 2000. Individual intake of mineral and molasses supplements by cows, heifers and calves. Canadian Journal Animal Science. 80:681–690.

Delgado, DC; González, R; Galindo, R; Dihigo, LE; Cairo, J; Almeida, M. 2013. Efecto del aceite de coco en el consumo, digestión de nutrientes y producción de metano en ovinos alimentados con forraje y concentrado. Revista Cubana de Ciencia Agrícola. 46(4):381-384.

Frohmann, A; Olmos, X. 2013. Huella de carbono exportaciones y estrategias empresariales frente al cambio climático. CEPAL (Comisión Económica para América Latina y el Caribe, CL). Santiago, CL.

Galindo, J; González, N; Delgado, D; Sosa, A; Marrero, Y; González, R; Moreira, O. 2008. Efecto modulador de Leucaena leucocephala sobre la microbiota ruminal. Zootecnia tropical. 26(3):249-252.
Gao, B; Ju, X; Su, F; Meng, Q; Oenema, O; Christie, P; Zhang, F. 2014. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. *Science of the Total Environment*. 472:112-124. (Disponible en: http://dx.doi.org/10.1016/j.scitotenv.2013.11.003).

Gerber, PJ; Steinfeld, H; Henderson, B; Mottet, A; Opio, C; Dijkman, J; Tempio, G. 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. FAO (Food and Agriculture Organization of the United Nations, IT). Rome, IT.

Griltrap, DL; Anne Gaelle, E; Ausseil, E; Thakur, KP; Sutherland, MA. 2013. Investigating a method for estimating direct nitrous oxide emissions from grazed pasture soils in New Zealand using NZ-DNDC. *Science of total environment*. 465:7-16. (Disponible en: http://dx.doi.org/10.1016/j.scitotenv.2013.03.053).

Hill, RW; Wyse, GA. 2006. *Fisiología animal*. Ed. Médica Panamericana. 1038 p. (Recuperado de: [https://books.google.com.mx/books?id=HZaC45m9IMMC&printsec=frontcover&dq=Fisiolog%C3%ADa+animal:&hl=es&sa=X&ei=F-iGVb-qPM6VvzVSvqoL4BQ&redir_esc=y#v=onepage&q=Fisiolog%C3%ADa%20animal%3A&f=false]).

Hristov, AN; Oh, J; Lee, C; Meinen, R; Montes, F; Ott, T; Firkins, J; Rotz, A; Dell, C; Adesogan, A; Yang, W; Tricarico, J; Kebreab, E; Waghorn, G; Dijkstra, J; Oosting, S. 2013. Mitigación de las emisiones de gases de efecto invernadero en la producción ganadera: Una revisión de las opciones técnicas para la reducción de las emisiones de gases diferentes al CO₂. Ed. Gerber, PJ; Henderson, B; Makkar, HPS. Roma, IT. Producción y Sanidad Animal FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura, IT). Documento 177.

Capítulo II.
Manejo integral del estiércol en fincas productoras de leche en Costa Rica

Darwin Lombo, Cristóbal Villanueva, Francisco Casasola

2.1. Antecedentes

La gestión integral del estiércol presta distintos beneficios al interior de las fincas ganaderas: mejora la fertilidad y el contenido de materia orgánica en los suelos; genera energía; mejora la producción sostenible para reducir los riesgos en la seguridad alimentaria (Bonten et ál. 2014); incrementa los ingresos en la finca y reduce los costos de producción; disminuye la dependencia de insumos externos (p. ej., fertilizantes sintéticos); mitiga las emisiones de gases de efecto invernadero (GEI) (Hristov et ál. 2013), la contaminación de suelos y agua, y la degradación de recursos naturales (Gerber et ál. 2013); y evita efectos negativos sobre la salud humana y la sanidad animal (FAO 2006).

El ganado vacuno, particularmente el lechero, requiere una gran cantidad de alimentos fibrosos y alta calidad nutricional en su dieta (FAO 2009). Una parte de ese alimento se desecha en forma de estiércol (excreta y orina) (IPCC5 2006), que se deposita y distribuye al interior de las pasturas mientras el ganado está pastoreando. Otra parte se concentra en las unidades de confinamiento, como las salas de alimentación, espera y ordeño. Sin un manejo apropiado, estas concentraciones suelen resultar en focos de contaminación para el medio ambiente y afectar la salud animal y humana.

La adecuada gestión del estiércol en las fincas ganaderas especializadas en leche es necesaria y beneficiosa. Reduce el impacto negativo en el ambiente y optimiza su

5 Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC, por sus siglas en inglés).
valor al interior de las fincas, mediante el uso de purines y compost en programas de nutrición de praderas y cultivos, y en la digestión anaeróbica para la generación de biogás y su posterior conversión a energía eléctrica o calórica.

Este capítulo pretende ser una herramienta para fortalecer el conocimiento y crear conciencia en las prácticas de manejo integral del estiércol en las fincas de ganadería especializada en leche en Costa Rica; en las ventajas derivadas de su aprovechamiento (en términos socioeconómicos y ambientales); y en los riesgos para la salud pública y la seguridad alimentaria.

2.2. Producción de purines en ganaderías especializadas en leche

El purín corresponde al subproducto agropecuario que se genera de la mezcla fortuita de estiércol (excreta y orina) y agua en las edificaciones de la actividad ganadera\(^6\). Su contenido de materia seca (MS) es menor que 10%, aunque puede variar dependiendo del manejo en las distintas fincas (Salazar 2012).

La producción de purines se relaciona con la producción de excretas y orina en las unidades de confinamiento, así como con un mayor uso de agua en las actividades de limpieza, y la contribución del agua de lluvia cuando no reciben ningún tipo de manejo de recolección o almacenamiento y su disposición final es el pozo purinero. Se estima que el agua representa casi la mitad del volumen de purines generados en el interior de las explotaciones ganaderas, lo cual es crítico cuando se usa agua limpia para lavar pisos y construcciones, en lugar de aprovecharla en otras actividades que requieran esta calidad de agua.

El estiércol es un componente importante en la producción de purines. Se estima que la producción diaria de estiércol de una vaca en ordeño es de 7 a 10%, con respecto al peso vivo del vacuno (Moreno y Molina 2007; Salazar 2012). Sin embargo, la cantidad de estiércol depende de la raza, del peso vivo, de la alimentación, la ingesta de agua y las condiciones atmosféricas (calor o frío) en las que se encuentra el

animal. Se considera que entre mayor sea el confinamiento (estabulación, patio de alimentación, o tiempo antes y durante el ordeño), mayor será la cantidad de estiércol por colectar con potencial de uso para la elaboración de purines. Por esta razón, es necesario estimar su producción, mientras que el resto del estiércol es depositado directamente en praderas o potreros donde los animales son manejados en la finca (FAO 2009; Salazar 2012; Hristov et ál. 2013).

2.3. Determinación de la cantidad de purín en instalaciones ganaderas

En Costa Rica, el Decreto N° 37017-MAG sobre el manejo de purines en la actividad de lechería especializada propone que para la elaboración del Plan de Aplicación de Purines como Fertilizante (PAPF) es necesario estimar el volumen de excretas que se recoge en las instalaciones físicas de la lechería y su mezcla con el agua, para formar el purín que se utilizará en el plan de fertilización. Este plan deberá promover el uso eficiente del recurso hídrico y recomienda no usar más de 4 litros de agua por cada kilogramo de excreta encontrado en las instalaciones físicas en el proceso de lavado. Si el agua de lluvia entra en contacto con los purines en el tanque de almacenamiento, se debe considerar como parte del volumen de purín para aplicar al campo. La estimación de la producción de excretas para Costa Rica se debe realizar por medio de la Ecuación 1.

Ecuación 1

\[N \text{° de animales} \times \text{peso vivo promedio} \times 0,08 \times N \text{° de horas que permanecen los animales en las instalaciones} \]

Donde:

- \(N \text{° de animales} = \) cantidad de animales que ingresan o permanecen en las edificaciones de la actividad ganadera
- \(\text{Peso vivo promedio} = \) estimación del peso de los animales en kg
- \(0,08 = \) cantidad promedio de estiércol (excreta y orina) generada por los animales (igual a 8% del peso vivo por día)
- \(N \text{° de horas que permanecen los animales en las instalaciones} = \) período en que los animales están en las instalaciones físicas
- \(24 = \) horas del día
Ejemplo 1

Se necesita estimar la producción de excreta y orina disponible en fincas ganaderas especializadas en leche para la producción de purines. El peso vivo promedio es de 450 kg, con una producción diaria de excretas de 8% con respecto al peso vivo de las vacas, y un tiempo de confinamiento de 6 horas/día. Para la estimación, se presentan distintos casos (Cuadro 9).

Cuadro 9. Estimación en la producción de excreta en lecherías especializadas

<table>
<thead>
<tr>
<th>N° animales</th>
<th>Peso vivo (kg/animal)</th>
<th>Producción diaria de excreta (kg/animal)</th>
<th>Horas en confinamiento (hr/animal/día)</th>
<th>Producción excretas en confinamiento (kg/hato/día)</th>
<th>Producción excretas en confinamiento (t/hato/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>450</td>
<td>36</td>
<td>6</td>
<td>225</td>
<td>81,9</td>
</tr>
<tr>
<td>50</td>
<td>450</td>
<td>36</td>
<td>6</td>
<td>450</td>
<td>163,8</td>
</tr>
<tr>
<td>75</td>
<td>450</td>
<td>36</td>
<td>6</td>
<td>675</td>
<td>245,7</td>
</tr>
<tr>
<td>100</td>
<td>450</td>
<td>36</td>
<td>6</td>
<td>900</td>
<td>327,6</td>
</tr>
</tbody>
</table>

Se estima que una vaca con un peso promedio de 450 kg en confinamiento por un periodo de 6 horas tiene la capacidad de producir 9 kg/animal/día de estiércol, que representa, en una explotación ganadera de 100 vacas, una producción diaria de estiércol de 900 kg/día y 327,6 t/año. Esa cantidad de excreta requiere una gestión adecuada que permita la optimización de su valor de uso, reduciendo su impacto en la salud humana y el ambiente.

2.3.1. Contenido nutricional de los purines

Para conocer el contenido nutricional del purín es necesario realizar un análisis químico de laboratorio que contemple la disponibilidad de elementos menores y mayores. Se recomienda que, antes de realizar cualquier programa de fertilización con purines, se identifique el aporte nutricional del suelo y los requerimientos nutricionales de los cultivos o las pasturas para diseñar un programa de nutrición vegetal.

El contenido nutricional del purín está relacionado con la composición química del estiércol, la cual, normalmente, depende de la clase, la condición, la edad, la fisiología, el alimento consumido y el manejo del estiércol del animal, entre otros.
Algunas investigaciones estiman que el contenido de nitrógeno (N) por tonelada de estiércol en bovinos lecheros es de 0,38 a 4,6%; es decir, una tonelada de estiércol puede contener un rango aproximado de N entre 3,8 y 46 kg/ton, óxido de fósforo (P$_2$O$_5$) entre 1 y 13 (kg/ton) y óxido de potasio (K$_2$O) entre 2,2 y 36 kg/ton (Moreno y Molina 2007). Algunas experiencias en el continente asiático estiman que la excreción anual de estiércol en vacas lecheras, con promedio de 600 kg PV, puede generar una producción de 100 kg de N, 40 kg de P$_2$O$_5$ y 65 kg de K$_2$O (Gerber et ál. 2013). En Costa Rica, los sistemas lecheros de la empresa Dos Pinos estiman que el contenido de N en el estiércol es de 2% o 2,4 kg/ton; los contenidos de P equivalen a 4,8 kg/ton; y los de P$_2$O$_5$ representan 10,99 kg/ton.

El purín presenta un bajo contenido de fósforo (P); sin embargo, aporta importantes cantidades de elementos menores y oligoelementos de importancia para los cultivos o las pasturas, como azufre (0,5 kg/ton), magnesio (2 kg/ton), calcio (5 kg/ton), manganeso (30 a 50 g/ton) y cobre (2 g/ton). En general, el aporte del purín, en términos de contenido de materia seca y nutriente, es bajo. No obstante, los altos volúmenes lo hacen interesante como alternativa para reducir los costos de fertilización de pasturas y cultivos, y reciclar internamente los nutrientes en el suelo (Salazar 2012). Se estima que el contenido total de nutrientes en el purín es similar al de las condiciones iniciales del estiércol, por lo que se espera que los contenidos nutricionales no varíen de forma significativa (Möller y Müller 2012).

2.4. Usos de purines como subproducto de la actividad ganadera

La apropiada gestión del estiércol permite variados usos que no han sido completamente explotados. Además de fertilizante en forma de compost y purín, se puede usar como materia prima para la producción de biogás. Solamente 1% de la producción mundial de estiércol se usa como biogás (Thøy et ál. 2009), mientras que, en la producción de cultivos en países desarrollados, 15% del N usado en el sector agrícola proviene de distintas formas de gestión del estiércol de ganado y, en los países en desarrollo, la contribución relativa puede ser mayor, pero no se encuentra documentada (FAO 2012) (Recuadro 1).
2.4.1. Uso de los purines en la producción de praderas y cultivos

El purín es un recurso valioso que puede usarse de distintas formas en la finca, incluyendo programas de fertilización de potreros o cultivos, ya que suele contener todos los micro y macro elementos esenciales requeridos para el crecimiento de las plantas y reduce los costos en fertilizantes sintéticos (Salazar 2012). También acelera la respuesta de absorción de N de las plantas en aproximadamente 20%, en comparación con los fertilizantes sintéticos (Langmeier et ál. 2002) e incrementa hasta en 10% los contenidos de materia orgánica (MO) y la actividad microbiana de los suelos (Capulin et ál. 2001: Salazar 2012). Estas condiciones mejoran la capacidad de retención de agua y reducen la erosión del suelo, aumentando el rendimiento de los cultivos (Araji et ál. 2001).

2.4.2. Uso de los purines en la elaboración de biogás y energía

Bajo las condiciones adecuadas, el purín se puede convertir en biogás mediante un proceso de digestión anaeróbica, reduciendo las emisiones de metano y óxido nitroso en 66% (Chadwick et ál. 2011) y los olores en 98% (Massé et ál. 2011), y mejorando las condiciones ambientales y sociales de las zonas rurales (Pinos et ál. 2012; Uprety et ál. 2012).
El biogás puede transformarse en energía eléctrica para el funcionamiento de las instalaciones ganaderas. Se estima que 1 m³ de biogás equivale a 2,2 Kw/h de electricidad (Herrero 2008); es decir, un biodigestor que genera 5 m³ de biogás puede proporcionar la energía eléctrica suficiente para abastecer un pequeño sistema de ordeño con un consumo de 7 Kw/h (Bartolomé et ál. 2013), mientras que 0,24 m³ de biogás puede generar energía para la marcha normal de una refrigeradora de 25 pies³ durante 24 horas (Huerga et ál. 2014).

El sistema de biodigestor genera energía limpia y proporciona un ahorro en los costos por energía eléctrica. Los afluentes que salen del biodigestor incrementan la disponibilidad de N y contienen la mayoría de los nutrientes solubles que requieren las plantas (Hristov et ál. 2013). Finalmente, el material orgánico (MO) proveniente del proceso de separación de sólidos después de un proceso de compost puede ser usado en cultivos y pasturas.

2.5. Impacto de los purines sobre el ambiente

Los sistemas extensivos de ganado vacuno afectan de manera significativa los flujos y la calidad del agua, mientras que los sistemas intensivos (concentración de ganado en parcelas o unidades de confinamiento) contaminan el suelo y el agua debido a las concentraciones de excretas y orina que exceden la capacidad de la tierra circundante de absorber los nutrientes (FAO 2009). En los sistemas extensivos, la mayoría de GEI resultan de la degradación del suelo por la liberación de dióxido de carbono y la fermentación entérica; en los sistemas intensivos, el estiércol es una de las principales fuentes de emisión de GEI (Hristov et ál. 2013). A continuación, se presentan algunos impactos ambientales generados por el uso inadecuado de purines.

2.5.1. Impacto de los purines sobre los recursos naturales

A nivel global, la tendencia de las explotaciones ganaderas especializadas en leche es generar gran cantidad de desechos en forma de purines durante el proceso de limpieza de las instalaciones ganaderas. Sin un manejo adecuado, los purines pueden perjudicar la salud humana y animal; ocasionar pérdida de diversidad biológica, acidificación de suelos, degradación de ecosistemas acuáticos y terrestres, y emisión
de GEI, como metano (CH$_4$) y óxido nitroso (N$_2$O) (IPCC 2006; FAO 2009). Además, contaminan el ambiente al filtrarse residuos líquidos y sólidos en el agua. Finalmente, las concentraciones en el suelo favorecen la lixiviación y la contaminación del aire (FAO 2012; Hristov et ál. 2013).

En Costa Rica, los esfuerzos realizados por el sector público (políticas como el decreto N°37017-MAG) y por el sector privado (capacitaciones y asistencia técnica) han sensibilizado y generado una conciencia ambiental en los productores ganaderos sobre el manejo y la utilización apropiada de los purines para reducir su impacto ambiental.

2.5.2. Impacto de los purines sobre la salud humana y animal

El uso inapropiado de purines puede ocasionar problemas en la salud humana y animal debido a la liberación de nitrógeno, fósforo, nutrientes, antibióticos, hormonas y organismos patógenos en las aguas superficiales y subterráneas de consumo humano y animal (FAO 2009). Entre los patógenos se destaca la enterobacteria *Escherichia coli*, que causa infecciones intestinales y extraintestinales, generalmente asociadas con diarrea hemorrágica en humanos y animales (LeJeune y Wetzel 2007). Los potreros con reiteradas aplicaciones de purines presentan un exceso de potasio (K) en el suelo, que disminuye la capacidad de las plantas para absorber magnesio, sodio y calcio, y puede provocar hipomagnesemia en las vacas (Salazar 2012).

La hipomagnesemia es una enfermedad que genera un desorden metabólico asociado con la disminución en los niveles de magnesio (Mg) en la sangre, debido a una reducida ingesta de Mg por parte del animal. Este desorden reduce el consumo de alimento, causando estrés y alteraciones en el sistema nervioso; reduce la síntesis de grasa láctea; disminuye la producción total de leche y, en casos severos, ocasiona la muerte del vacuno (Sánchez y Saborío 2014). Por esta razón, es necesario realizar un análisis nutricional de los purines y un análisis químico del suelo por fertilizar antes de la aplicación de purines, con el propósito de realizar un balance nutricional en los potreros.
2.5.3. Impacto de la ganadería sobre las emisiones de GEI

La ganadería contribuye con el cambio climático al emitir GEI directamente (p. ej., mediante la fermentación entérica o la gestión del estiércol) o indirectamente (p. ej., por las actividades desarrolladas durante la producción de alimentos y la conversión de bosques en pastizales) (FAO 2009) (Cuadro 10). En general, la actividad ganadera a nivel global genera 9% de las emisiones de dióxido de carbono (CO₂).
antropogénicas7, 37\% de las emisiones de metano (CH\textsubscript{4}) y 65\% de las emisiones de óxido nitroso (N\textsubscript{2}O) (FAO, 2006). En conjunto y expresadas en CO\textsubscript{2} equivalente, representan 14,5\% de las emisiones de GEI antropogénicas a nivel mundial. En Costa Rica se estima que la gestión del estiércol en 2011 aportó 1,975 Gg8 de CH\textsubscript{4} y 0,240 Gg de N\textsubscript{2}O, siendo la tercera fuente de emisiones de CH\textsubscript{4} y N\textsubscript{2}O más importante después del cultivo de arroz y de la fermentación entérica del ganado (MINAE \textit{et ál.} 2014).

Cuadro 10. Fuentes de emisión de GEI en fincas ganaderas

<table>
<thead>
<tr>
<th>Cadena de suministro</th>
<th>Actividad</th>
<th>GEI</th>
<th>Fuente de emisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIDAD DE PRODUCCIÓN ANIMAL</td>
<td>Producción ganadera</td>
<td>CH\textsubscript{4}</td>
<td>• Fermentación entérica \n• Gestión del estiércol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N\textsubscript{2}O</td>
<td>• N\textsubscript{2}O directo e indirecto, proveniente de la gestión del estiércol \n• Fertilizantes sintéticos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO\textsubscript{2}</td>
<td>• Uso directo de energía en las explotaciones agrícolas para el ganado (p. ej., refrigeración, ventilación y calefacción)</td>
</tr>
</tbody>
</table>

Fuente: Adaptado de Gerber \textit{et ál.} (2013)

2.6. Emisiones de CH\textsubscript{4} y N\textsubscript{2}O provenientes de la gestión del estiércol en la ganadería

En el proceso de gestión del estiércol, se liberan a la atmósfera distintos gases. Sin embargo, durante el almacenamiento y tratamiento del estiércol, se genera CH\textsubscript{4} y N\textsubscript{2}O, como los más importantes en términos de contenido y potencial de calentamiento global. Se estima que la gestión del estiércol9 emite alrededor de 2,2 Gt CO\textsubscript{2}-eq/año10 en forma de CH\textsubscript{4} y N\textsubscript{2}O, principalmente, en el proceso de almacenamiento, aplicación y deposición final (FAO 2009). No obstante, existen variadas estrategias de gestión del estiércol que pueden generar mayor o menor grado de emisiones de GEI. Esta cantidad de emisiones de CH\textsubscript{4} y N\textsubscript{2}O están influenciadas por la temperatura, el

7 Antropogénico: resultado de la actividad humana.
8 Un gigagramo (Gg) equivale a mil toneladas.
9 La gestión del estiércol hace referencia al acopio y a la recolección de los excrementos animales en edificaciones, así como al almacenamiento, procesamiento y aplicación en los cultivos (Hristov \textit{et ál.} 2013).
10 Gigatonelada de dióxido de carbono equivalente por año. 1 Gt = 1.000.000.000 toneladas.
tiempo de almacenamiento y el medio en el que se desarrolla la gestión; es decir, en el medio aeróbico (presencia de oxígeno) o anaeróbico (ausencia de oxígeno) en que se lleva a cabo el proceso de gestión (IPCC 2006).

Una forma de conocer el potencial de emisión de CH₄ y N₂O, proveniente de los distintos sistemas de gestión del estiércol, es mediante el uso de factores de emisión para los distintos gases de CH₄ y N₂O (IPCC 2006; Gerber et ál. 2013). Además, es importante conocer los principales factores que inciden en estas emisiones, las cuales se describen a continuación.

Emisiones de metano (CH₄) por la gestión del estiércol

Los principales factores que inciden en las emisiones de CH₄ corresponden a la producción de estiércol por animal y a la porción que se descompone anaeróbicamente. Cuando el estiércol se almacena o procesa en forma líquida como purín (p. ej., en lagunas, estanques, tanques o pozos purineros), se descompone anaeróbicamente y puede producir cantidades significativas de CH₄ que se dirigen a la atmósfera. Se estima que el factor de conversión de metano (FCM) en este sistema es de 66 a 80%, según la temperatura en la que se lleva a cabo la gestión. Sin embargo, esta proporción de metano disponible para dirigirse a la atmósfera puede almacenarse en un sistema de biodigestión y, posteriormente, ser transformada en energía eléctrica y calorífica, reduciendo las emisiones directas de CH₄ en la atmósfera y potencializando el valor de uso del estiércol como energía.

El afluente del biodigestor (Biol) puede ser usado como fertilizante en los cultivos, para que las plantas mejoren la asimilación de nitrógeno (Bonten et ál. 2014) en relación con los fertilizantes sintéticos. El proceso de biodigestión del estiércol puede reducir la presencia de patógenos perjudiciales para la salud humana (p. ej., *Escherichia coli* y *Salmonella*) en 98 a 99,5% cuando alcanza una temperatura de 35°C en un periodo de 21 días (Horan et ál. 2004). La gestión sólida del estiércol en forma de parvas o pilas, o cuando se deposita en pasturas, tiende a descomponerse bajo condiciones aeróbicas generando un FCM de 1 a 5%. Empero, esta práctica aumenta las emisiones de N₂O.
El sistema de gestión en parvas presenta algunas limitantes, como mayor permanencia y cantidad de patógenos en el suelo y en los cultivos después de usarse como abono. Este efecto residual puede impactar el ambiente, la salud humana y poner en riesgo la seguridad alimentaria de las familias ganaderas si no recibe un tratamiento complementario (como el compostaje).

El uso de las dos prácticas anteriores debe valorar sus alcances y efectos sobre el ambiente y la salud humana; los costos de infraestructura; y la mano de obra para las actividades de recolección, almacenamiento, tratamiento y disposición final del estiércol.

Emisiones de óxido nitroso (N_2O) por la gestión del estiércol

El N_2O se produce durante el almacenamiento y tratamiento del estiércol, antes de que se aplique a la tierra o se utilice de otra manera con fines alimentarios (como combustible o para la construcción). Puede generar las siguientes emisiones de GEI de manera directa o indirecta:

- **Emisiones directas de N_2O.** Se producen a través de la nitrificación del estiércol; es decir, la oxidación del nitrógeno amoniacal para formar nitrógeno nitrato. El proceso de nitrificación ocurre cuando el estiércol es almacenado y tratado en condiciones aeróbicas. De igual manera, estas emisiones son favorecidas por el contenido de nitrógeno y carbono presente en el mismo estiércol, y la duración de su almacenamiento.

- **Emisiones indirectas de N_2O.** El estiércol sufre un proceso de descomposición de la materia orgánica mediante la acción de microorganismos. En este proceso, se liberan formas inorgánicas de nitrógeno como amoníaco (NH_3) y óxidos de nitrógeno (NO_x), las cuales son solubles en agua y presentan pérdidas indirectas por volatilización al esparcirse fácilmente en el aire circundante (Asman et ál. 1998). Las pérdidas de nitrógeno comienzan en el punto de excreción en las áreas de producción animal (p. ej., salas de confinamiento) y continúan durante la gestión *in situ*, en los sistemas de recolección, almacenamiento y tratamiento (por ejemplo, los sistemas de gestión del estiércol). También se pierde nitrógeno durante el escurrimiento y la lixiviación en los suelos de almacenamiento de sólidos de estiércol a la intemperie, corrales de engorde y pasturas.
2.7. Factores de emisión por gestión del estiércol en ganadería especializada en leche

Como se mencionaba anteriormente, los sistemas de gestión del estiércol generan emisiones de metano (CH₄) y óxido nitroso (N₂O). Estos factores de emisión representan el rango de contenido de sólidos volátiles del estiércol, y los generados en el proceso de gestión del estiércol empleados en cada región, así como la diferencia en las emisiones debido a la temperatura (IPCC 2006).

Para estimar las emisiones CH₄ y N₂O generadas en la gestión del estiércol, el IPCC (2006) propone factores de emisión (FE) según región y temperatura. Éstos se proponen ya que la mayoría de los países carecen de una estimación propia de factores de emisión. A continuación, revisaremos los FE para el sistema de manejo del estiércol líquido, por ser este el de mayor producción en las explotaciones especializadas en leche.

2.7.1. Factor de emisión de metano (CH₄) por gestión del estiércol en ganadería especializada en leche

En América Latina, el CH₄ generado por la excreción de estiércol en una explotación ganadera ubicada en un clima templado (15 a 25 °C) tiene un valor de 1 (kg CH₄ cabeza⁻¹ año⁻¹), mientras que en una explotación en un clima cálido (26 a ≥28°C) se estima en 2 (kg CH₄ cabeza⁻¹ año⁻¹) (IPCC 2006) (Cuadro 11).
Cuadro 11. Factores de emisión de metano por gestión del estiércol para vacuno lechero según la temperatura media anual (TMA) en kg CH$_4$ cabeza$^{-1}$ año$^{-1}$

<table>
<thead>
<tr>
<th>Características regionales en América Latina</th>
<th>Especies de ganado</th>
<th>Factores de emisión de CH$_4$ según la temperatura promedio anual (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casi todo el estiércol del ganado se gestiona como sólidos en pasturas y prados.</td>
<td>Vacas lecheras</td>
<td>Frío</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Otros vacunos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En las explotaciones ganaderas especializadas en leche, la gestión del estiércol inicia mediante un proceso de raspado y lavado del estiércol de las instalaciones de confinamiento. En este proceso, el purín se dirige a un sistema de gestión del estiércol en condiciones anaeróbicas, previo a la separación de su parte sólida, donde se generan cantidades significativas de CH$_4$. Sin embargo, para este sistema de gestión del estiércol en particular, se carece de información suficiente sobre su valor de FCM, el cual es necesario para conocer el impacto de la práctica en la reducción de emisiones de metano.

Por lo anterior, usaremos como FCM el valor de la práctica de gestión del estiércol de laguna anaeróbica no cubierta (IPCC 2006), debido a su similitud con la gestión del estiércol objeto de este documento (pozo purinero). La laguna anaeróbica no cubierta se diseña para diversos períodos de almacenamiento (más de un año) y el líquido se usa para irrigar y fertilizar campos. Los sólidos aislados en la laguna son gestionados en forma de compost o son depositados directamente en las pasturas y los cultivos. Cada una de estas prácticas de gestión del estiércol cuenta con un FCM específico, según su temperatura y período de permanencia.
A continuación, se describen los FCM específicos para las prácticas más comunes de gestión del estiércol en la ganadería especializada en leche, según estudios realizados por la Cooperativa de Productores de Leche Dos Pinos, en las zonas de San Carlos, Cartago y San José, Costa Rica. Los estudios, realizados con una pequeña muestra de productores, estiman que la práctica más común de gestión del estiércol corresponde a la distribución diaria del estiércol (73%), seguida de la biodigestión (7%), el almacenamiento en pozos (6%), el compostaje (6%), el almacenaje sólido (6%) y la cama profunda (2%).

Laguna anaeróbica no cubierta
El FCM para este sistema de gestión del estiércol varía entre 66% y 80%, a partir de la cantidad de sólidos volátiles (SV\(^{11}\)) del estiércol, según las especies y el régimen alimenticio de los animales (IPCC 2006). Este sistema tiene la desventaja de que el metano se fuga a la atmósfera, ya que la laguna está al descubierto.

Digestión anaeróbica
El purín generado en las unidades de confinamiento antes de la separación de sus componentes sólidos se resume, anaeróbicamente, en un tanque contenedor o en una laguna cubierta (IPCC 2006). Se estima que en este sistema de gestión el FCM es de 0 a 100% (Cuadro 12). Este FCM alcanza un alto valor de SV que puede ser usado para la producción de biogás. La producción diaria de biogás en un biodigestor depende de la cantidad de SV que presente en la carga de estiércol.

\(^{11}\) Los sólidos volátiles representan la parte de sólidos totales del estiércol (peso del estiércol una vez seco) que está sujeta a pasar a la fase gaseosa (kg/m\(^3\)).
Cuadro 12. Valores del factor de conversión de metano (FCM) para cada sistema de gestión del estiércol, según la temperatura media anual (TAM)

<table>
<thead>
<tr>
<th>Sistema de gestión</th>
<th>FCM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frio (°C)</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Laguna anaeróbica no cubierta</td>
<td>66</td>
</tr>
<tr>
<td>Digestor</td>
<td>0 - 100</td>
</tr>
<tr>
<td>Compost</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Adaptado de IPCC (2006)

El proceso de digestión ocurre cuando, en el interior del tanque contenedor, las bacterias presentes en el estiércol digieren los compuestos orgánicos del estiércol y generan 40% de CO₂ y 60% de CH₄ (Penn State University 2015). La cantidad y calidad del biogás está relacionada con la composición nutricional del estiércol. Dependiendo de los contenidos de grasas, carbohidratos y proteínas de los distintos sustratos, la fracción de metano contenido en el biogás puede variar entre 50% y 75% en volumen (MINENERGÍA/GIZ 2012). Cuando el CH₄ se acumula, genera gas que puede ser utilizado como una fuente de energía eléctrica en sustitución de los combustibles fósiles, reduciendo así las emisiones de GEI (Börjesson y Berglund 2006). También es usado en forma de energía calorífica, para la cocción de alimentos.

Sin embargo, una de las preocupaciones identificadas en este sistema se relaciona con las fugas no controladas de CH₄ de las plantas de biogás, las cuales se estiman de 5 a 20% del total de biogás producido (Sommer et ál. 2001). Estas fugas pueden localizarse en el sistema de almacenamiento y digestión, así como en los sistemas de conducción del gas. Se recomienda realizar inspecciones continuas en el funcionamiento de cada uno de estos sistemas, y prestar atención a la válvula de seguridad para evitar fugas en este sistema.

Compostaje

Los residuos sólidos provenientes de la separación del purín (estiércol sólido) se manejan en pilas que son volteadas, por lo menos, una vez por semana. Esto
favorece la aireación y logra una temperatura óptima entre 54 y 60°C, facilitando las condiciones aeróbicas para que las bacterias del estiércol descompongan el C en CO₂, en lugar de liberar C como CH₄. El resultado de este proceso es un producto libre de patógenos, semillas de maleza y malos olores, que puede aplicarse a la tierra como abono, mejorando la utilidad de los subproductos orgánicos (p. ej., fertilizantes) y reduciendo los costos en fertilizantes sintéticos (Alberta 2005). Para este sistema de gestión del estiércol, se estima un valor FCM de 1% con respecto a los SV del estiércol (IPCC 2006). El compostaje reduce las emisiones de CH₄ (Thompson et ál. 2004), pero puede incrementar las pérdidas de NH₃ y N₂O (Tao et ál. 2011).

2.7.2. Factor de emisión de óxido nitroso (N₂O) por gestión del estiércol en ganadería especializada en leche

Como se indicó anteriormente, en la gestión del estiércol se presentan emisiones de N₂O de manera directa e indirecta. Estas emisiones están relacionadas con la excreción en las áreas de producción animal (p. ej., salas de confinamiento) y continúan durante la gestión in situ, en los sistemas de almacenamiento y tratamiento; es decir, en los sistemas de gestión del estiércol.

En términos de emisiones de N₂O, se estima que el factor de emisión de la tasa de excreción para ganado vacuno en América Latina es de 0,48 (Cuadro 13); es decir, 0,48 kg de N por cada 1.000 kg de PV del animal por día. En una explotación ganadera especializada en leche, con vacas en producción con un promedio de 600 kg de PV, se estima que se producen diariamente 0,288 kg de N por animal, lo cual representa 105,12 kg por año.

<table>
<thead>
<tr>
<th>Categoría animal</th>
<th>Tasa de excreción de nitrógeno (kg por 1.000 kg de PV por día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganado vacuno</td>
<td>0,48</td>
</tr>
<tr>
<td>Otros vacunos</td>
<td>0,36</td>
</tr>
</tbody>
</table>

2.8. Emisiones directas de N_2O de la gestión del estiércol

Se estima que la práctica de gestión del estiércol con mayor tasa de pérdida de N en el sistema de gestión corresponde a la laguna anaeróbica, con 77%, mientras que la cantidad de N generado por el sistema de gestión del estiércol de almacenaje de sólidos es de 40% (Cuadro 14).

Cuadro 14. Pérdidas de nitrógeno en distintos sistemas de gestión del estiércol

<table>
<thead>
<tr>
<th>Categoría animal</th>
<th>Sistema de gestión del estiércol</th>
<th>Total de pérdida de N del MMS a frac pérdida MS (rango de frac pérdida MS)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacas lecheras</td>
<td>Laguna anaeróbica</td>
<td>77% (55 – 99)</td>
</tr>
<tr>
<td></td>
<td>Almacenaje de sólidos</td>
<td>40% (10 – 65)</td>
</tr>
<tr>
<td></td>
<td>Distribución diaria</td>
<td>22% (15 – 60)</td>
</tr>
</tbody>
</table>

a El sistema de gestión del estiércol incluye las pérdidas asociadas de N en el ámbito de los animales y en el sistema de almacenamiento final.
b Tasas de pérdida total de N basadas en el Dictamen del Grupo de Expertos del IPCC. Las tasas incluyen las pérdidas de NH_3, NO_x, N_2O y N_2, así como las producidas por lixiviación y escurrimiento del almacenamiento sólido y de los corrales de engorde. Los valores representan las tasas promedio para los ambientes típicos y componentes de almacenamiento, sin aplicación de medidas significativas de control del N. Los rangos reflejan los valores que aparecen en la bibliografía.

La pérdida de N debido a la volatilización de NH_3 y NO_x de la gestión del estiércol durante el tratamiento y almacenamiento es mayor en la laguna anaeróbica, con 35%, seguida por el almacenaje de sólidos, con 30% (Cuadro 15).

Cuadro 15. Pérdidas de nitrógeno (N) debido a la volatilización de NH_3 y NO_x en los distintos sistemas de gestión del estiércol

<table>
<thead>
<tr>
<th>Categoría animal</th>
<th>Sistema de gestión del estiércol</th>
<th>Pérdida de N del MMS debido a la volatilización de N-NH$_3$ y N-NO$_x$ (%) Frac Gas MSa (rango de Frac Gas MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacas lecheras</td>
<td>Laguna anaeróbica</td>
<td>35% (20 – 80)</td>
</tr>
<tr>
<td></td>
<td>Almacenaje de sólidos</td>
<td>30% (10 – 40)</td>
</tr>
<tr>
<td></td>
<td>Distribución diaria</td>
<td>7% (5 – 60)</td>
</tr>
</tbody>
</table>

a cantidad de N del estiércol gestionado para la categoría de ganado que se pierde en el sistema de gestión del estiércol.

Para ambos tipos de pérdida de N en los sistemas de gestión del estiércol (Cuadro 6; Cuadro 7), las menores tasas de pérdida de N corresponden a la *distribución diaria*, en la cual el estiércol se saca de las instalaciones de confinamiento y se aplica a las tierras de cultivo o pasturas dentro de las 24 horas siguientes a su excreción (IPCC 2006).

La implementación de prácticas de gestión del estiércol es necesaria para reducir las emisiones de CH₄ y N₂O en las explotaciones ganaderas especializadas en leche. Sin embargo, se requiere evaluar un nivel de adopción que contemple costos marginales de implantación y beneficios económicos en la conversión de energía eléctrica, la reducción del uso de fertilizantes sintéticos, y el mejoramiento de la productividad de pasturas o cultivos irrigados con los productos de la gestión del estiércol.

2.9. Normativa ambiental vigente en Costa Rica sobre el manejo de purines en la actividad de lechería especializada (Decreto N° 37017-MAG)

La normativa ambiental que regula el manejo y la utilización de purines en la actividad lechera en Costa Rica está definida por el Decreto de la Presidencia de la República de Costa Rica y el Ministerio de Agricultura y Ganadería N°37017-MAG. El decreto expresa con claridad las condiciones del uso y manejo de residuos (sólidos y líquidos) provenientes de purines en las fincas especializadas en producción de leche, para prevenir riesgos a la salud animal y ambiental (agua y suelo), y mejorar las características físicas, químicas y microbiológicas del suelo, en condiciones óptimas de uso.

Para cumplir el decreto, según las disposiciones de la Ley General N° 8495 del Servicio Nacional de Salud Animal (SENASA), debe velar por la protección de la salud veterinaria, en armonía con la salud humana y el medio ambiente. El SENASA, como autoridad designada, otorga un Certificado Veterinario de Operación (CVO), mediante el cual se autoriza a la persona física o jurídica para que se dedique a una o varias de las actividades mencionadas en el artículo 56 de la Ley General N° 8495. Este certificado hace constar el cumplimiento del Plan de Manejo de Desechos Sólidos y Aguas Residuales, en lo que a purines se refiere. El otorgamiento del CVO para
cumplir con el plan de manejo, en cuanto al aprovechamiento de estiércol, requiere que el solicitante elabore un **Plan de aplicación de purines como fertilizante (PAPF)**.

El PAPF es un “instrumento normativo para el adecuado aprovechamiento de los purines, a fin de mejorar las características físicas, químicas y microbiológicas del suelo, alcanzando mayor producción y calidad de los forrajes, evitando los riesgos a la salud animal y ambiental, utilizado como una alternativa para cumplir el requisito del Plan de Manejo de Desechos Sólidos y Aguas Residuales, en lo que a purines se refiere, para optar por el Certificado Veterinario de Operación”.

El Decreto N° 37017-MAG establece, en su “Artículo 4° - Del PAPF”, los criterios para la adecuada disposición de purines en las explotaciones ganaderas, con el fin de reducir su impacto ambiental y optimizar su uso.

A continuación, extractos del Artículo 4° del decreto antes mencionado:

Artículo 4° - Del PAPF
La aplicación de purines en los terrenos de las fincas se hará siguiendo los siguientes criterios:

a- **Determinación de volumen de purín**
El PAPF debe estimar el volumen de excretas que se recoge en las instalaciones físicas de la lechería y su mezcla con el agua, para formar el purín que se utilizará en el plan de fertilización.

b- **Análisis de suelo**
Para establecer el PAPF se debe contar con un análisis físico y químico de los suelos de la zona donde se ubica la finca, para elaborar un plan de fertilización químico-orgánico.

c- **Hectáreas disponibles reales para aplicar el PAPF**
En las hectáreas disponibles reales para las aplicaciones de purines, el hato en pastoreo no debe exceder el equivalente de nueve animales con cuatrocientos kilos de peso vivo cada uno, por hectárea, por día.

Si el área disponible para el PAPF es menor a la necesaria para aprovechar los purines producidos, el productor debe hacer un uso alternativo del exceso de purín, ya sea sacándolo de la finca o realizando cualquiera de las otras...
alternativas de manejo de la excreta, como por ejemplo: lombricompost, composta, biodigestores. Dichas técnicas deben ser promovidas por instituciones estatales de educación, y similares. No se recomienda la aplicación de purines en potreros destinados a animales jóvenes, menores de seis meses de edad.

d- **Selección del sistema**

Es crucial que la aplicación sea uniforme y rotacional en las áreas seleccionadas para el PAPF. El encargado del PAPF deberá seleccionar la tecnología más adecuada para la aplicación de purines en las áreas determinadas.

e- **Áreas limitantes para recibir purines**

Para la determinación de las áreas de riesgo se considerará la legislación resumida en el Cuadro 16.

Cuadro 16. Legislación vigente en Costa Rica para la disposición final de purines

<table>
<thead>
<tr>
<th>Marco legal</th>
<th>Áreas en riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ley Forestal, N° 7575</td>
<td>Aquellas con un distanciamiento mínimo de quince metros, a ambos lados, de ríos, quebradas o arroyos, permanentes o intermitentes.</td>
</tr>
<tr>
<td>Ley de Aguas N° 276</td>
<td>Áreas a menos de cuarenta metros de radio de pozos de agua.</td>
</tr>
<tr>
<td></td>
<td>Áreas ocupadas por caminos públicos, o con un distanciamiento mínimo de diez metros cuando se use riego por aspersión.</td>
</tr>
<tr>
<td></td>
<td>Áreas a menos de treinta metros de casas de habitación.</td>
</tr>
<tr>
<td>Decreto Ejecutivo N° 23214 MAG-MIRENEM</td>
<td>Áreas con pendientes superiores al 50%, por el alto riesgo de escorrentía superficial.</td>
</tr>
<tr>
<td></td>
<td>Áreas con menos de dieciocho días de haber sido fertilizadas con purines.</td>
</tr>
</tbody>
</table>

Fuente: Adaptado del Artículo 4°- Del PAPF, Decreto N° 37017-MAG

El acatamiento de lo establecido por el decreto sobre el uso de purines y del Plan Integral de Manejo de Desechos Sólidos y Líquidos es obligatorio para todo ganadero. Por lo tanto, es necesario que todas las unidades productivas pecuarias realicen un manejo adecuado de los remanentes orgánicos, aseguren un buen aprovechamiento
del material, reduzcan las posibles formas de contaminación ambiental (suelos y agua), y mejoren la sanidad animal (ver disposiciones de obligatoriedad en el Artículo 7° del Decreto N° 37017-MAG).

Los esfuerzos nacionales por impulsar el manejo integral de los purines, como residuos provenientes de la actividad lechera en Costa Rica, son alentadores y velan por la optimización de los residuos provenientes de la gestión del estiércol y por la conservación del ambiente y de la salud animal. Sin embargo, falta información y estímulo para implementar buenas prácticas para el manejo de excretas ganaderas, que ofrezcan múltiples beneficios ambientales a largo plazo —p. ej., reducción del impacto ambiental, generación de energía o participación en el mercado de bonos de carbono (Pinos et ál. 2012).

Además de monitorear el cumplimiento del PAPF, y controlar el uso y manejo de los excedentes resultantes de las fincas, se requiere promover la integración del medio ambiente como un componente importante en la discusión sobre el manejo de excretas y sus repercusiones sobre la calidad de vida de una población, cada vez más vulnerable en términos de salud debido al impacto del cambio climático.

El Recuadro 3 incluye ejemplos de acciones y medidas regulatorias de manejo del estiércol en Dinamarca.
En Dinamarca, la intensificación de la agricultura durante los últimos 50 años alteró el ciclo natural del nitrógeno, lo que produjo importantes emisiones de amoníaco a la atmósfera y la contaminación por nitratos del agua. La alta concentración de nitratos en el agua subterránea y superficial empeoró la calidad del agua potable (AEMA 2003) y causó la eutrofización de los lagos y las zonas marinas litorales. Al inicio de la década de los ochenta, la preocupación pública por la eutrofización de las aguas litorales danesas contribuyó a que este gobierno regulara las emisiones de nitrógeno del sector agrícola.

En 1985, se adoptaron una serie de planes de acción y medidas regulatorias, que han incrementado drásticamente la eficiencia del uso del nitrógeno en la agricultura y reducido la contaminación por nitrógeno (Mikkelsen et ál. 2009). Entre otras cosas, estos planes exigían que los productores incrementaran la capacidad de almacenamiento de purines y dejaran de emplearlos durante los meses de invierno; se ajustaran a presupuestos obligatorios para los fertilizantes, con el fin de establecer una correspondencia entre la absorción por parte de las plantas y las aplicaciones de los nutrientes; instalaran cubiertas en los tanques de purines y redujeran la densidad de pastoreo en algunas zonas. En 2001, el plan de acción sobre el amoníaco ofreció subsidios para fomentar la buena gestión del estiércol en los establos de los animales y, para mejorar el diseño de tales establos, exigió cubiertas en las pilas de estiércol, prohibió la aplicación de purín mediante el esparcido a voleo, e instó a que el estiércol líquido se incorporara en el suelo en un plazo de seis horas tras su aplicación.

Los principales instrumentos de la regulación del nitrógeno en Dinamarca son los planes obligatorios sobre los fertilizantes y la rotación de cultivos, que cuentan con unos límites específicos para cada cultivo con respecto a la cantidad de nitrógeno disponible para las plantas que se puede aplicar, y unas normas estatutarias para la utilización de nitrógeno obtenido a partir del estiércol. Estas normas reflejan la cantidad de nitrógeno del estiércol que se cree que está disponible para las plantas. Además establecen unos límites para la cantidad de fertilizantes minerales que puede aplicar cada agricultor. Cada año, los agricultores deben informar al Ministerio de la Alimentación cuánto fertilizante nitrogenado mineral han adquirido. La aplicación de nitrógeno procedente del estiércol y de los fertilizantes minerales no puede superar la cantidad de nitrógeno total para una explotación determinada.

Las regulaciones han tenido un gran éxito a la hora de reducir el nitrógeno filtrado desde el suelo. No obstante, la filtración de nitrógeno en algunas cuencas hidrográficas sigue siendo elevada, y podría ser necesaria una reducción ulterior en algunas regiones para conseguir una buena calidad ecológica en todas las aguas litorales (Dalgaard et ál. 2004).

Fuente: FAO (2009)
2.10. Buenas prácticas para mejorar el uso del estiércol en fincas

La actividad de lechería especializada tiene una característica que se presenta en casi todas las fincas: las vacas están durante un número definido de horas al día en el corral y el resto de las horas están en el repasto. A veces, los animales están estabulados permanentemente. En todo caso, hay una distribución de excreta sólida y líquida entre los pisos del corral y los repastos.

La excreta depositada en el corral suele ser removida del piso de concreto por medios manuales o mecánicos. El lavado con agua a presión es muy común, así como el uso de escobones o rasquetas para empujar la excreta. En algunos casos, muy especializados y mecanizados, se usan limpiadores automáticos. El objetivo es remover la excreta y acumular la carga orgánica en un punto determinado, normalmente un tanque de captación, para su manejo y aprovechamiento. Sin embargo, aún hay casos en los que la excreta es removida de los corrales y enviada por caños o canales al ambiente, sin manejo ni aprovechamiento. Cuando el corral no cuenta con un piso firme de concreto, el piso de tierra o lastre no se lava, sino que la excreta sólida se recolecta con una pala, manual o mecánica, para su utilización o descarte.

Existe una amplia gama de opciones disponibles para una adecuada gestión del estiércol, como las tecnologías de separación, el compostaje y la digestión anaeróbica (Hristov et ál. 2013). Algunos de los beneficios de estas opciones son la aplicación inocua de estiércol a los cultivos para la alimentación humana y animal, la mejora del saneamiento y control de los olores, la producción de biogás, el incremento del valor del estiércol como fertilizante y la reducción de los GEI (FAO 2009).

El tipo de tecnología que usará el productor estará sujeta a los logros por alcanzar en términos de impacto ambiental (atmósfera, agua, suelo y biodiversidad) y a la eficacia en la reducción de CH₄ y N₂O. Sin embargo, es evidente que existen otros criterios de gran importancia para el productor, como el tamaño de la explotación ganadera; los costos relacionados directamente con la cantidad de estiércol generado; los costos en infraestructura, almacenamiento, tratamiento y transporte; y la aplicación de los desechos a praderas y cultivos. Además, deberá tomar en cuenta la capacitación y asistencia técnica, la ubicación geográfica de las explotaciones ganaderas y las normativas ambientales.
A continuación, se describen algunas tecnologías comunes en las fincas ganaderas de Costa Rica.

Tanque que colecta purines
El almacenamiento de los purines es una actividad importante en los sistemas de ganadería especializada, debido a los grandes volúmenes que se generan. Además de la carga orgánica, sus nutrientes y su contenido de patógenos, su almacenamiento es prácticamente obligatorio. Es necesario planificar un almacenaje y una disminución del volumen.

El sistema de tanque de almacenamiento de purín puede almacenar elementos sólidos y líquidos. No obstante, la eficiencia del sistema mejora al evitar la entrada de elementos que interrumpan el proceso. Existen variaciones en el diseño del sistema de gestión del estiércol en forma de purín, para potencializar su uso. Cuando el purín en los corrales y las salas de ordeño sufre un proceso de fraccionamiento o separación de sólidos, el uso del estiércol se optimiza para generar biogás, y su posterior conversión en energía renovable, y fertilizantes para praderas y cultivos. La parte sólida (extrusado) puede ser usada en un esquema de elaboración de abono orgánico en forma de compost. En ambos casos, es necesario realizar un análisis químico del suelo y de los requerimientos nutricionales de los cultivos y las pasturas, con el propósito de realizar la dosificación adecuada y evitar la toxicidad en animales.

Estructuras previas al pozo
Un uso mas eficiente del purín se alcanza al evitar restos de forraje y otros materiales (palos, piedras, tubos u otros) en la entrada del pozo, ya que pueden causar bloqueos en los sistemas de aplicación. Se recomienda instalar rejillas metálicas en el piso, sobre canales de coducción de purines y dentro del canal de purines, para evitar la entrada de materiales al pozo. En el canal, se deben poner desarenadores para atrapar el material extraño. Los desarenadores son pequeñas fosas ubicadas dentro del canal hacia el tanque purinero, los cuales deben limpiarse periódicamente para mantener su funcionalidad.
Ubicación del pozo
La ubicación del pozo es importante porque puede reducir los costos de recolección y distribución. Algunos criterios son los siguientes:

- Utilizar al máximo la gravedad para el traslado de purines.
- Mantener una distancia prudente con respecto a las instalaciones y viviendas (debido a la generación de olores, moscas y roedores, y a la contaminación visual).
- Crear un pozo bien sellado y con techo hermético o abierto.
- Tomar en cuenta el espacio disponible y la dirección del viento.
- Cumplir con la legislación sobre el uso de purines (Decreto N° 37017-MAG, Artículo 4°).

Práctica 1. Tanque purinero completo (líquido y sólido)

Descripción de la tecnología
El sistema está compuesto por un tanque de captación principal, que recibe todas las aguas de lavado y purines, sin ningún tipo de separación; un sistema de mezclado y bombeo de los purines contenidos en el tanque; una red de tuberías que permite llegar hasta los repastos donde se aplicará la mezcla; y un cañón de aspersión (Figura 2).
Figura 2. Sistema de purines sólidos y líquidos en fincas ganaderas en Costa Rica

Es común instalar una sección de tubería de riego fija, enterrada y estratégicamente dispuesta para, luego, por medio de hidrantes o puntos de conexión, continuar con tubería móvil hasta el repasto, donde se aplicarán los purines por medio del cañón giratorio. Según la cantidad diaria de purines por aplicar y la potencia del equipo de bombeo, puede haber más de un cañón de aplicación simultáneo.

Para este mismo sistema de gestión del estiércol, existe una variación en la cual una parte del purín (sólido y líquido), sin separación de sólidos, se dirige al biodigestor para generar biogás y, en algunos casos, convertirse en energía eléctrica o calórica. El afluente del biodigestor es usado para la fertilización de repasos. Esta variación debe valorar los costos de mantenimiento del biodigestor debido a los procesos de colmatación a causa de los residuos sólidos (Figura 3). Esta acumulación de sedimentos reduce el volumen efectivo del digestor, causa problemas de digestión y disminuye la vida útil del sistema. Para controlar la sedimentación, el material en el digestor se puede agitar por medio de una bomba de lodos, un agitador mecánico, o la colocación estratégica de los tubos de calefacción. Sin embargo, es necesario valorar la inversión en cada uno de los sistemas complementarios (Penn State University 2015).
Figura 3. Sistema de gestión de purines sólidos y líquidos con inclusión de biodigestor en fincas ganaderas en Costa Rica

La versión del sistema con tanqueta elimina la tubería de distribución y se alimenta directamente del tanque de captación por medio de una bomba de succión o por gravedad, para llenar la tanqueta que normalmente se tirada por un tractor. La tanqueta tiene un equipo de aspersión, accionado por la toma de fuerza del tractor. Hay casos en que la tanqueta no tiene equipo de aspersión, sino solamente una descarga que se abre mientras el tractor avanza en el repasto.

El acceso del tractor a los diferentes sitios de aplicación debe ser seguro. En las épocas de lluvia excesiva, el uso de la tanqueta con el tractor se debe limitar a aquellas áreas a las que sea posible llegar por medio de caminos transitables todo el año. La aspersión de purines completos mediante equipo de aspersión o tanqueta es una alternativa funcional; no obstante, requiere una distribución técnica de las aplicaciones en los potreros para asegurar el mejor aprovechamiento del recurso y evitar la acumulación del material nutritivo en una zona determinada.
La rotación de los cañones de aplicación es básica para asegurar una buena distribución del material. Normalmente, se programa que el cañón se desplace hacia los potreros que han sido recientemente pastoreados, con el fin de romper ciclos de parásitos y hacer llegar el material nutritivo a la pastura que está en recuperación. De hecho, el esquema de aspersión de purines bajo esta técnica se enfoca en lograr una rápida incorporación del material en el suelo y reducir las pérdidas del material.

En algunos casos, cuando el uso de cañones esté limitado por razones técnicas, ambientales y económicas, se pueden aplicar los purines usando la manguera directamente en el suelo o colocando un “sombrero chino” a baja altura. Lo anterior se puede usar, entre otros, cuando haya viento excesivo que arrastre la aplicación hacia zonas ambientalmente frágiles o sitios poblados.

Es importante evitar la colocación de los cañones en zonas con una topografía muy inclinada o cercana a fuentes, para evitar el escurrimiento del material aplicado y la contaminación de quebradas o ríos. Además, se debe insistir en la aplicación de la técnica correcta porque, en caso de hacer aplicaciones que produzcan acumulación excesiva de material en sitios reducidos, se pueden activar procesos de generación de GEI y reducir el aprovechamiento de los purines en la unidad productiva.
Descripción de la tecnología
En este sistema, a diferencia del tanque purinero completo, el purín pasa por un proceso de separación de su parte sólida (extrusado) antes de dirigirse al tanque purinero para su posterior uso como fertilizante. El esquema de separación está compuesto por dos o tres piletas de concreto, interconectadas por medio de una tubería de PVC. En el sistema, la fibra de estiércol se separa y flota al cabo de pocas horas de haber sido depositada en el primer tanque (Figura 4). La fibra que flota se puede retirar de forma manual (con pala y carretillos) o mecánica (con un equipo de bombeo y un equipo extrusor). Este sistema puede tener dos variaciones que optimizan el uso de subproductos del estiércol cuando una fracción del purín líquido con separación de sólidos se dirige al biodigestor para la generación de biogás y su posterior conversión en energía eléctrica. El extrusado se transforma en compost para ser usado como abono.
Figura 4. Sistema de gestión de purines con separación de sólidos, con la variación de sistemas de biodigestor y compost en fincas ganaderas en Costa Rica

Separación de sólidos
La separación de sólidos es el primer paso para un manejo integral de purines en lechería especializada. Su propósito corresponde al fraccionamiento de los purines en dos fases:

- Fase sólida: compuesta principalmente por la fibra y los sólidos, con algún grado de humedad.
- Fase líquida: presenta básicamente sólidos disueltos y sedimentables en mayor y menor concentración, según la eficiencia del método de separación utilizado.

El material depositado en los corrales y las salas de ordeño es removido por medio de lavado con agua o empujado por medio de raspadores o cepillos, y enviado a la zona de separación de sólidos.
Barrido de purines completos con rasqueta o raspador.

Esquema de separación de purines

Existen distintas alternativas de manejo de los purines en la zona de separación. Un esquema muy sencillo es el uso de cajones o piletas de concreto, fibra de vidrio, plástico u otro material, para realizar la separación por densidad o flotación, aprovechando que la fracción fibrosa es menos densa que el agua y, por lo tanto, flota.

En el caso práctico de Costa Rica, algunas explotaciones ganaderas usan una secuencia de dos o tres piletas, interconectadas por medio de una tubería de PVC. Como se mencionó anteriormente, el retiro de la fibra que flota puede hacerse de forma manual o mecánica, utilizando equipo de bombeo para homogenizar la mezcla y enviar las aguas con la fibra hacia un separador mecánico de cascada, rotativo o de tornillo helicoidal con presión.
Separador de sólidos por densidad de tres fases.

Esquema de separación mecánica por densidad

Mediante el uso de este esquema de separación, el porcentaje de recuperación de sólidos puede alcanzar de 30 a 50% del total de sólidos presentes en los purines. Hay que considerar que una parte de los sólidos totales están disueltos en las aguas de los purines, por lo que la posibilidad de separarlos es muy baja o nula. Normalmente, lo que más se recupera es la fibra y una parte de los sólidos totales más gruesos.

Esquema combinado

Este esquema corresponde a la combinación de distintas infraestructuras. Una combinación de tanque de captación, con desarenadores antes del tanque principal, separadores por densidad o flotación, más el equipo de separación mecánico por gravedad o bombeo puede resultar en un esquema de fraccionamiento eficiente para lograr una alta recuperación de sólidos, ya sea para abono orgánico, para líquido con potencial de alimentar biodigestores o, directamente, para riego por aspersión con equipo de baja potencia (bombas de 2 a 3 HP).
Las dimensiones de los tanques de flotación y del equipo de separación mecánico están relacionadas con los volúmenes de purines recolectados diariamente. En cuanto a los tanques, lo ideal es que el volumen total de los tanques sea al menos 75% del volumen de purines y agua que se obtiene en el lavado de los corrales por día.

Equipo de separación mecánico
Se recomienda que sea un separador de cascada, rotativo o por tornillo helicoidal con presión (denominado normalmente como “extrusor”), el cual debe relacionarse con el volumen de purines por separar. Su uso eficiente requiere seguir las recomendaciones técnicas del fabricante o técnico experto. La malla del separador de cascada tiene una abertura que permite que el sólido quede retenido en la superficie de la cascada y que el agua pase a través de la malla de regreso al tanque de captación o al separador por densidad donde está la bomba de succión (Fotografía 8).

El espacio de la abertura de la malla debe ser de 1 a 1,5 mm, con el fin de permitir la retención de la fibra y el paso del líquido. Los espacios menores (p. ej., 0,75 mm) pueden provocar atascos, a menos que la dieta de las vacas sea muy baja en fibra. Por el contrario, los espacios mayores permiten que una cantidad muy alta de sólidos con potencial de retención atraviesen la malla y regresen al tanque de flotación o densidad.

El uso de un sistema de bombeo permite recircular el material y hacer pasar el purín varias veces por el separador de cascada o extrusor, para obtener más cantidad de sólidos separados y, por consiguiente, una fase líquida con menos fibra.
Una vez terminada la labor de separación, se obtiene un sólido amontonado con una humedad relativamente baja y un líquido con sólidos disueltos entre 3.000 y 12.000 mg/l, según el esquema de separación utilizado.

En el caso de fincas pequeñas, el método de separación de sólidos puede realizarse mediante el uso de un sistema de piletas de separación por gravedad. Este sistema requiere la extracción semanal de los sólidos colmatados en las piletas. Los sólidos obtenidos deben manejarse para obtener abono orgánico; los líquidos continúan a una fase fermentativa con biodigestores o se riegan por aspersión en las pasturas.

Compostaje de estiércol

El compostaje es un proceso biológico que ocurre en condiciones aeróbicas. Con la adecuada humedad y temperatura, se asegura una transformación higiénica del estiércol en un material homogéneo y asimilable por las plantas. El compostaje se interpreta como la sumatoria de procesos metabólicos complejos realizados por microorganismos (FAO 2013). Los microorganismos consumen el oxígeno (O₂) mientras se alimentan de materia orgánica del estiércol, produciendo calor, CO₂ y vapor de agua. Durante esta etapa, la mayor parte de la materia orgánica degradable se descompone. Se necesita entonces un plan de gestión para mantener la temperatura adecuada, el oxígeno y la humedad óptima para la actividad microbiana.
El compost final toma características similares al humus y a la fracción orgánica de suelo. En general, el material después del compostaje puede reducir su volumen de 20 a 60%, el contenido de humedad en 40% y su peso hasta 50%. Uno de los principales retos en el compostaje es conservar la mayor cantidad de nitrógeno posible. El compostaje puede contribuir a la emisión de GEI ya que emite CO₂, NH₄ y NO₂ a la atmósfera (IPCC 2006; Gerber et ál. 2013).

Los sólidos provenientes del extrusador pueden convertirse en compost mediante el sistema de pilas con volteo semanal, facilitando la aireación natural, la temperatura y la humedad donde el material se alterna con capas de distintos materiales para garantizar una adecuada relación de carbono a nitrógeno (C:N)¹² (FAO 2013). Generalmente, el material por compostar es recogido y amontonado rápidamente en pilas.

El proceso de compostaje requiere de ciertos factores óptimos que pueden acelerar y afectar el proceso de manera significativa (Alberta 2005). Entre estos factores se destacan la temperatura, la aireación, el pH, el contenido de humedad, la porosidad y la relación C:N (Cuadro 17).

Cuadro 17. Factores que influyen en el proceso de compostaje y sus rangos óptimos

<table>
<thead>
<tr>
<th>Factor</th>
<th>Rango aceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>54 a 60°C</td>
</tr>
<tr>
<td>Relación de carbono a nitrógeno (C:N)</td>
<td>25:1 a 30:1</td>
</tr>
<tr>
<td>Aireación, porcentaje de oxígeno</td>
<td>> 5%</td>
</tr>
<tr>
<td>Contenido de humedad</td>
<td>50 a 60%</td>
</tr>
<tr>
<td>Porosidad</td>
<td>30 a 36</td>
</tr>
<tr>
<td>pH</td>
<td>6,5 a 7,5</td>
</tr>
</tbody>
</table>

¹² Los microbios necesitan de 20 a 25 veces más carbono que nitrógeno para permanecer activos. Los microorganismos digieren el carbono como fuente de energía e ingieren nitrógeno para su reproducción. Se puede usar virutas de madera blanda, aserrín y heno como fuentes de carbono, al igual que residuos de alimentos, papel periódico o cartón triturado (Alberta 2005).
Potencial de reducción de metano (CH$_4$) y óxido nitroso (N$_2$O)

Los factores de emisión de CH$_4$ y N$_2$O para este sistema de gestión del estiércol se pueden observar en los Cuadros 11 y 13. En general, se considera que las emisiones de N$_2$O en el sistema de gestión del estiércol en forma de purín son insignificantes, debido a la ausencia de formas oxidadas de nitrógeno que entran al sistema, anulando el potencial para la nitrificación y desnitrificación del purín (IPCC 2006).

Las emisiones de GEI procedentes de purines son causadas, principalmente, por las emisiones de CH$_4$ durante el almacenamiento, debido a las condiciones anaeróbicas, y por las emisiones de N$_2$O después de la aplicación de purines en pasturas y cultivos (Gerber et ál. 2013). Sin embargo, es necesario aclarar que para este sistema de gestión del estiércol se carece de información suficiente sobre las cantidades de emisiones de GEI generadas, debido a que están muy relacionadas con el tiempo de almacenamiento, la temperatura y la calidad del material forrajero no degradable presente en el estiércol.

Práctica 3. Digestión anaeróbica (biodigestor)

Definición de la tecnología

Como se mencionó anteriormente, la digestión anaeróbica es el proceso de degradación de materiales orgánicos por bacterias, el cual se produce naturalmente en el sistema de estiércol líquido en ausencia de oxígeno (anaeróbica), convirtiendo los ácidos volátiles en biogás, en forma de metano y dióxido de carbono, vapor de agua, sulfuro de hidrógeno y amoníaco (Uprety et ál. 2012; Penn State University 2015).

La biodigestión se considera una práctica promisoria para mitigar las emisiones de GEI del estiércol recolectado, y una fuente de energía renovable en forma de biogás, el cual está constituido por 60 a 80% de CH$_4$ y 20 a 40% de CO$_2$, dependiendo del sustrato y de las condiciones de operación (Roos et ál. 2004). La digestión anaeróbica también puede reducir la población de patógenos como la Escherichia coli y Salmonella de 98 a 99,5% (Horan et ál. 2004) y el olor del estiércol (Dhingra et ál. 2011). El biogás también puede usarse para suministrar electricidad o energía calorífica y reducir las emisiones de CO$_2$ de los combustibles fósiles (carbón) (Uprety et ál. 2012). Por otra parte, el afluente (Biol) de la descomposición anaeróbica después
de digerido es bajo en olor y rico en nutrientes, y puede usarse en la fertilización al interior de las fincas (Bonten et ál. 2014: Penn State University 2015).

El uso de biodigestores como esquema de tratamiento de purines en la ganadería especializada en leche no es una práctica muy común pero, en algunas ocasiones, se observa este tipo de tecnología adaptada a lecherías. En el estudio realizado por Dos Pinos en San Carlos, Cartago y San José en Costa Rica, se estima que sólo 7% de las familias ganaderas implementan biodigestores como una práctica de gestión del estiércol. Esto puede deberse a la falta de conocimiento sobre sus beneficios ambientales y económicos para las fincas, así como a la falta de conciencia sobre el impacto del estiércol en el ambiente y la salud pública. El mismo estudio estima que 73% de los productores gestionan el estiércol mediante su distribución diaria en potreros o cultivos práctica que debe realizarse de manera planificada, con el propósito de reducir el impacto negativo del estiércol sobre los recursos naturales.

La alimentación del biodigestor mediante el uso del purín es una práctica importante en la vida útil del biodigestor. Cuando el biodigestor se alimenta con purines completos (p. ej., sin la separación de sólidos), requiere atención especial debido a que las sobrecargas de fibra de difícil digestión pueden ocasionar la colmatación del biodigestor y su salida de operación (Penn State University 2015). Una solución es implementar esquemas de movimiento interno en el biodigestor; empero, esto puede no ser viable debido a las reducidas dimensiones de los biodigestores que normalmente se usan en Costa Rica y que no permiten la adaptación de este tipo de sistema convencional, más usado a nivel industrial. Por esta razón, se recomienda una buena práctica de alimentación del biodigestor mediante la separación de sólidos presentes en el purín antes de su disposición en el biodigestor (ver Práctica 2).

Descripción de la tecnología
En la actualidad, existen cuatro diseños básicos de digestores anaeróbicos para producciones ganaderas a nivel comercial. Para las fincas especializadas en leche en Costa Rica, se usan los digestores de flujo continuo, los cuales utilizan un recipiente que recibe el estiércol en un extremo y desalojan el afluente en el otro extremo. Los digestores de pequeña escala suelen tener este diseño (Roos et ál. 2004).
El sistema del biodigestor tubular está compuesto por un sistema de recarga diaria de materia prima (mezcla de estiércol con agua en relación de 1:3 para estiércol de ganado vacuno); una membrana de PVC (del volumen requerido según la producción de estiércol en la explotación ganadera); una cámara de fermentación (almacenamiento de gas, cubierta desmontable o sellada); una válvula de seguridad; un sistema de conducción del biogás (para su conversión final en energía eléctrica o calórica); y un sistema de salida del afluente del biodigestor (que será usado como fertilizante para cerrar el ciclo de nutrientes en pasturas o en otros usos agrícolas). En el biodigestor se alcanza finalmente un equilibrio de nivel hidráulico; es decir, que la cantidad de purín que ingresa es la misma cantidad de afluente usado como fertilizante que sale por la tubería al otro extremo (Herrero 2008).
Biodigestor construido en geomembrana de PVC para medianas explotaciones ganaderas.

Se considera que el volumen de la fase líquida que contiene el biodigestor es igual al 75% del volumen total del biodigestor, mientras que el 25% restante corresponde al volumen de la fase gaseosa en forma de biogás (Figura 5).

Fuente: Herrero (2008)

Figura 5. Esquema básico de un biodigestor y del inicio de la conducción de biogás hacia una cocina
Para que la carga diaria de entrada pueda ser digerida por las bacterias, es necesario que esté en el interior del biodigestor durante el tiempo de retención estimado según la temperatura del lugar. Dado que el biodigestor tubular es de flujo continuo, el volumen líquido será el resultado de multiplicar el tiempo de retención por la carga diaria (Herrero 2008).

El gas capturado se almacena en la parte superior del tanque digestor (área de almacenamiento de gas). La generación de biogás aumentará gradualmente la presión en el área almacenada. Cuando el volumen del gas capturado es mayor que la cantidad consumida, la presión en el almacenamiento de gas aumentará y los purines serán empujados a la cámara de salida. Si la cantidad de gas consumido excede la disponibilidad de gas, el nivel desciende y la suspensión fermentada fluye de nuevo en la cámara de fermentación (Uprety et ál. 2012).

La calidad de materia orgánica (MO) que compone el purín constituye la base primordial para la producción de biogás. En este sentido, la relación de carbono y nitrógeno (C:N) apropiada para que las bacterias funcionen de manera adecuada de 25 a 30:1; es decir, de 25 a 30 partes de carbono por una parte de nitrógeno. Un apropiado contenido de materia seca (MS) en el proceso de fermentación para la producción de biogás debe estar en un rango entre 7 y 10% (Uprety et ál. 2012: Salazar 2012).

Las tasas de fermentación del biodigestor dependen, en gran medida, de la temperatura de fermentación en el digestor, ya que la temperatura afecta directamente la tasa de digestión de la MO y el rendimiento del gas (Uprety et ál. 2012). Se consideran tres rangos prácticos de temperatura en los sistemas de biogás anaeróbico: psicrófilo (15 a 25°C), mesófilo (30 a 38°C), y termófilo (50 a 60°C). En temperaturas inferiores a 15°C, la producción de biogás se reduce significativamente (Sommer et ál. 2007). La fermentación del biogás requiere un equilibrio en el valor de pH entre 7 y 8, debido a su efecto sobre la actividad biológica de las bacterias en el biodigestor (Uprety et ál. 2012).

Ventajas y desventajas

Ventajas

- Reducción de emisiones de GEI (menos emisión de CH₄ procedente del manejo del estiércol; menos emisiones de CO₂ por el menor uso de combustibles fósiles; y menos emisión de N₂O por sustitución o reducción de fertilizantes nitrogenados).

- Ahorro en costos de energía, proporcionando biogás (energía limpia).

- Disminución en uso de fertilizantes sintéticos mediante la aplicación del efluente proveniente del biodigestor.

- Mejoramiento de características físicas, químicas y biológicas de los suelos por la aplicación del afluente.

- Mejora de las condiciones locales del ambiente en las zonas rurales.

- Menor presencia de enfermedades en la salud humana y animal.

- Menor germinación de semillas de malezas en pasturas de 1 a 0%.

Desventajas

- Los sistemas de digestión anaeróbica requieren un alto capital de inversión para la construcción, el mantenimiento y la supervisión.

- Requieren disponibilidad de estiércol en calidad y cantidad suficiente para la producción óptima de biogás.

- Es necesaria la capacitación y asistencia técnica con el fin de implementar prácticas exitosas de mitigación.

- El biogás es poco competitivo en comparación con otras fuentes de combustible utilizadas para producir calor o una combinación entre calor y potencia.

- Se requiere mano de obra para el mantenimiento preventivo y no programado.

- Los digestores anaeróbicos pueden ser inseguros, debido a su capacidad de combustión.
Costo de implementación
Los costos de establecer un biodigestor y sus beneficios son proporcionales al tamaño del biodigestor (Cuadro 18). Se estima que el volumen de un biodigestor común en pequeñas fincas ganaderas en Costa Rica es de 8 m³. Este tamaño de biodigestor requiere una inversión de 673 USD, sin incluir la asistencia técnica que facilita el Ministerio de Agricultura y Ganadería (MAG). Este biodigestor puede generar un volumen de biogás de 1,18 m³/día, que representa un ahorro mensual de 10,5 USD en electricidad o de 9,46 USD en gas propano para la cocción de alimentos en un hogar. En este sentido, se espera que el productor recupere la inversión del establecimiento del biodigestor en un periodo de 5,3 años, ya que la vida útil del biodigestor es de 8 a 10 años con una buena práctica de alimentación del estiércol.

Cuadro 18. Inversión y beneficios del establecimiento de biodigestores

<table>
<thead>
<tr>
<th>Inversión (USD)</th>
<th>Biodigestor 8 m³</th>
<th>Biodigestor 250 m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodigestor</td>
<td>474</td>
<td>5.105</td>
</tr>
<tr>
<td>Separador de sólidos</td>
<td>47</td>
<td>1.632</td>
</tr>
<tr>
<td>Techado</td>
<td>152</td>
<td>NR</td>
</tr>
<tr>
<td>Inversión total de establecimiento</td>
<td>673</td>
<td>6.737</td>
</tr>
<tr>
<td>Mantenimiento (anual)</td>
<td>80</td>
<td>600</td>
</tr>
<tr>
<td>Beneficios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción de biogás (m3/día)</td>
<td>1,18</td>
<td>30</td>
</tr>
<tr>
<td>Electricidad (Kwh)</td>
<td>5,6</td>
<td>66</td>
</tr>
<tr>
<td>Ahorro en electricidad (USD/mes)</td>
<td>10,5</td>
<td>369</td>
</tr>
<tr>
<td>Producción de Biol (l/día)</td>
<td>100</td>
<td>NR*</td>
</tr>
</tbody>
</table>

*NR: no reporta

Fuente: Finca comercial CATIE, Costa Rica; Fernando Martínez, técnico regional del MAG en Turrialba, Costa Rica.

Para una explotación ganadera mediana, con un biodigestor de 250 m³, se estima un costo de inversión de 6.037 USD, para una producción aproximada de biogás de 30 m³/día, que representa un ahorro mensual de 329 USD en electricidad para el funcionamiento de los equipos de ordeño y de 620 USD en términos de ingresos por la producción de abonos provenientes del compostaje de excretas.
Potencial de reducción de GEI

El potencial de mitigación de GEI mediante biodigestores como un sistema de gestión del estiércol es amplio, y se describe a continuación:

- Los biodigestores reducen las emisiones de GEI en los hogares entre 23 y 53%, en comparación con los hogares sin biogás; sin embargo, esto depende de la condición del biodigestor, la asistencia técnica y la habilidad del operario (Dhingra et ál. 2011).

- El metano se utiliza como una fuente de energía, sustituyendo el uso de combustibles fósiles para reducir las emisiones de los GEI: NO\textsubscript{x}, hidrocarburos y partículas en suspensión (Börjesson y Berglund 2006).

- Los GEI por unidad de calor disminuyen entre 10 y 25% cuando el calor del biogás reemplaza el calor de los combustibles fósiles (Böjersson y Berglund 2007).

- El estiércol sometido a un proceso de digestión anaeróbica, cuando es aplicado en el campo, reduce sus emisiones de N\textsubscript{2}O hasta 70%, en comparación con el estiércol no tratado (Hristov et ál. 2013).

2.11. Consideraciones

Debido a sus fuentes de alimentación, las explotaciones ganaderas especializadas en leche generan grandes cantidades de estiércol, el cual se distribuye en las pasturas o se concentra en las unidades de confinamiento animal. Si el estiércol no recibe una gestión adecuada, se corre el riesgo de impactar negativamente al medio ambiente, a la salud humana y a la seguridad alimentaria de las familias ganaderas.

La gestión integral del estiércol genera ingresos adicionales para las familias, al reducir el consumo de fertilizantes sintéticos (que pueden ser reemplazados por purines, Biol o compost) y, por ende, mejorar la capacidad de las pasturas o de los cultivos para asimilar los nutrientes. De igual forma, reduce la contaminación de aguas para el consumo humano y animal, y asegura la inocuidad de productos fertilizados con estiércol, al garantizar una reducción significativa de patógenos como...
Escherichia coli (98%) y Salmonella (99,5%). El uso de biogás a nivel domiciliario en fincas pequeñas también contribuye a ahorrar entre 113 y 126 USD por año, debido a la disminución en el consumo de energía eléctrica.

Un buen manejo del estiércol reduce la emisión de GEI (especialmente, metano y óxido nitroso) y sirve como medida de adaptación y mitigación al cambio climático, a la vez que mejora la calidad de vida, y la seguridad alimentaria y nutricional de las familias ganaderas.

Referencias

Capulin, GJ; Nuñez, ER; Etchevers, BJ; Baca, CG. 2001. Evaluación del extracto líquido de estiércol bovino como insumo de nutrición vegetal en hidroponía. Agrociencia. 35:287-299.

Dhingra, R; Christensen, E; Liu, Y; Zhong, B; Fu, C; Yost, M; Remains, J. 2011. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China. Environ Sci Technol. 45:2345-2352.

Gerber, PJ; Steinfeld, H; Henderson, B; Mottet, A; Opio, C; Dijkman, J; Falcucci, A; Tempio, G. 2013. Hacer frente al cambio climático a través de la ganadería: Evaluación global de las emisiones y las oportunidades de mitigación. (Roma, IT. Organización de las Naciones Unidas para la alimentación y la agricultura. (Disponible en: www.fao.org/publications).

IPCC (Intergovernmental Panel on Climate Change, SZ). 2007. The scientific basis contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change: Summary for Policymakers was formally approved at the 10th Session of Working Group I of the IPCC, Paris, February 2007. Paris, FR. Eds. R Alley; T Berntsen; N Bindoff; Z Chen; A Chidhaisong; P Friedlingstein; J Gregory. 18 p.

Langmeier, M; Frossard, E; Kreuzer, M; Mäder, P; Dubois, D; O'Connor, A; Recous, S; Nicolardot, B. 2002. Nitrogen fertilizer value of cattle manure applied on soils originating from organic and conventional farming systems. Agronomie. 22. 789–800.

Menzi, H; Oenema, O; Burton, C; Shipin, O; Gerber, P; Robinson, T; Franceschini, G. 2009. Impacts of intensive livestock production and manure management on ecosystems. In: Livestock in a changing landscape: Drivers, consequences, and responses. Eds. H, Steinfeld; H, Mooney; F, Schneider; L, Neville. Washington DC, US. Island Press.

Roos, KF; Martin, JH; Moser, MA. 2004. AgSTAR Handbook: A manual for developing biogas systems at commercial farms in the United States. 2nd ed. Environmental Protection Agency, US.

Sommer, SG; Møller, HB; Petersen, SO. 2001. Reduktion af drivhusgasemission fra gylle og organisækk uddannelse ved biogasbehandling [Reducción de los gases de efecto invernadero provenientes del estiércol y los desechos orgánicos mediante la biodigestión y la producción de gas]. En: DJF-rapport nr 31.Tjele, DK. Husdyrbrug, Danish Institute of Agricultural Sciences.

Tao, J; Schuchardt, F; GuoXue, L; Rui, G; YuanQiu, Z. 2011. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. *J. Environ. Sci.* 23.1754-1760.

Thøy, K; Wenzel, H; Jensen, AP, Nielsen, P. 2009. Biogas from manure represents a huge potential for reduction in global greenhouse gas emissions.

3.1. Antecedentes

Existe un creciente interés por el impacto que causan las emisiones de gases de efecto invernadero (GEI), provenientes de las actividades humanas, sobre la atmósfera y el clima. Este interés ha presionado a la comunidad mundial para abordar el tema de manera urgente. En 2013, la concentración de CO$_2$ en la atmósfera aumentó 142%; la de metano, 253%; y la de óxido nitroso, 121%, con respecto a los niveles registrados en la era preindustrial, antes del año 1750 (Marton 2015). Además, se sabe que el uso de combustibles fósiles genera alrededor de 79,7% del CO$_2$ que se emite en el mundo.

Gerber et ál. (2013) mencionan que las emisiones de GEI de la cadena de producción de ganado contribuyen con 14,5% de las emisiones globales. Las fuentes de emisiones de GEI en los sistemas ganaderos especializados en leche se deben principalmente a lo siguiente:

a) emisiones de metano (CH$_4$), procedentes de la fermentación entérica;

b) emisiones de metano y óxido nitroso (N$_2$O), derivadas del manejo del estiércol;

c) emisiones directas, provenientes de fertilizantes nitrogenados sintéticos;

d) emisiones de dióxido de carbono (CO$_2$), originadas por la utilización de combustibles fósiles, debido al uso de maquinaria y equipo agrícola en la finca; y

e) emisiones de dióxido de carbono, resultantes de los cambios en los usos de la tierra.
Aunque los sistemas de producción ganaderos emiten GEI, también pueden actuar como sumideros o depósitos de carbono; especialmente, cuando se promueve la forestación13 o aforestación14 en áreas con limitantes para el desarrollo de la ganadería y la arborización en áreas de pasturas (Amézquita \textit{et ál.} 2008), ya que los árboles y las pasturas absorben CO\textsubscript{2} atmosférico y energía radiante durante la fotosíntesis y los transforman en materia orgánica, carbohidratos y oxígeno, los cuales son esenciales para el ser humano y los animales.

Las instituciones de investigación, el Ministerio de Agricultura y Ganadería, el Ministerio de Ambiente y Energía, y la Cooperativa de Productores de Leche Dos Pinos R.L. en Costa Rica, han venido promoviendo usos de la tierra amigables con el ambiente y buenas prácticas de gestión, que permitan la conservación y acumulación de carbono en las fincas ganaderas.

El presente capítulo ofrece una serie de opciones tecnológicas para productores y técnicos, con el fin de promover su adopción en las fincas de lechería especializada. Dichas opciones conllevan a una mayor fijación del carbono atmosférico, para que el sector lechero compense sus emisiones de GEI y contribuya con la meta que se ha impuesto Costa Rica para alcanzar la neutralidad de carbono en el año 2021.

3.2. Fijación y almacenamiento de carbono (CO\textsubscript{2})

La fijación de CO\textsubscript{2} es un proceso que resulta de la fotosíntesis (conversión de energía radiante o solar en energía química) de las plantas, mediante el cual el CO\textsubscript{2} es absorbido y transformado en materia orgánica o carbohidratos (Ecuación 2). Dicha ecuación también se conoce como el ciclo de Calvin-Benson o como la fase de fijación del CO\textsubscript{2} de la fotosíntesis (Figura 6), que consiste en procesos biológicos y químicos que se llevan a cabo en el estroma de los cloroplastos de los organismos que realizan la fotosíntesis (Noggle y Fritz 1983).

13 Actividad humana directa, dedicada a la conversión de terrenos que no han contenido bosques durante un período de al menos 50 años para convertirlos en terrenos con cobertura forestal mediante la plantación, siembra o promoción de fuentes de semillas naturales por parte de los seres humanos (IPCC 2006).

14 Establecimiento de árboles donde nunca hubo antes plantas forestales (INECC 2015).
Ecuación 2

\[\text{CO}_2 + \text{H}_2\text{O} + \text{Energía radiante} \rightarrow \text{C}_6\text{H}_12\text{O}_6 + \text{O}_2 \]

Figura 6. Ciclo de Calvin-Benson o fase de fijación del CO\(_2\) de la fotosíntesis

Se considera que un depósito almacena carbono cuando el depósito presenta un aumento de contenido de carbono en un periodo de tiempo establecido.

3.3. Almacenamiento de carbono en fincas ganaderas

En los sistemas de producción agropecuarios, forestales y agroforestales presentes en las fincas ganaderas existen diferentes depósitos en los cuales es posible medir la fijación y el almacenamiento de carbono (Cuadro 19).
Cuadro 19. Descripción de los depósitos de carbono presentes en un uso del suelo determinado

<table>
<thead>
<tr>
<th>Depósito</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasa viva sobre el suelo</td>
<td>Toda la biomasa viva presente sobre el suelo. Incluye: troncos, tocones vivos, ramas, cáscaras, semillas y hojas. Se evalúan por separado la biomasa aérea leñosa y la del estrato herbáceo.</td>
</tr>
<tr>
<td>Biomasa viva subterránea</td>
<td>Toda la biomasa de raíces vivas mayores a 2 mm de diámetro.</td>
</tr>
<tr>
<td>Materia orgánica en madera muerta</td>
<td>Toda la biomasa forestal no viva. Incluye: troncos caídos, árboles muertos en pie y tocones mayores que 10 cm de dap (diámetro altura de pecho).</td>
</tr>
<tr>
<td>Materia orgánica muerta en hojarasca</td>
<td>Toda la biomasa no viva sobre el suelo. Incluye: hojas, ramas y cáscaras de frutos en diferentes estados de composición. Comprende el detritus y humus.</td>
</tr>
<tr>
<td>Materia orgánica del suelo</td>
<td>Incluye el carbono orgánico en suelos minerales y orgánicos a una profundidad específica seleccionada por el proponente del proyecto.</td>
</tr>
<tr>
<td></td>
<td>Raíces finas vivas con diámetros menores que 2 mm.</td>
</tr>
</tbody>
</table>

Fuente: IPCC 2005b

La periodicidad o frecuencia de la medición del carbono en un determinado depósito de carbono está en función de las tasas de cambio en la fijación de carbono, la permanencia del carbono, el costo de monitorear el carbono en determinado depósito y las exigencias del mercado en el cual se negocian los certificados de reducción de emisiones. Se recomienda hacer monitoreos anuales en componentes con tasa alta de fijación, tales como la biomasa aérea. En suelos, el monitoreo puede hacerse con menos frecuencia, ya que es muy costoso y la cantidad de carbono no cambia dramáticamente con el tiempo en áreas no perturbadas (Vine et al. 1999).

3.4. Metodología para la medición de carbono en diferentes depósitos

Existen metodologías que describen, paso a paso, cómo medir la cantidad de carbono almacenado por un depósito en un determinado uso de la tierra en una finca ganadera. Andrade e Ibrahim (2003) propusieron el siguiente diagrama, el cual muestra los pasos a seguir para evaluar el carbono almacenado en los depósitos que tienen una mayor contribución, al almacenar carbono en diferentes usos de la tierra en fincas ganaderas (Figura 7).
3.5. ¿Cómo mejorar la captura y el almacenamiento de carbono en una finca ganadera?

Para mantener el carbono existente o mejorar la captura de carbono en una finca ganadera se promueven diferentes acciones, entre ellas:

a) la protección de las áreas de bosques existentes;

b) la liberación de áreas para regeneración natural;

c) la promoción y conservación de la regeneración y siembra de leñosas en diferentes arreglos —p. ej., plantaciones forestales (Kraenzel et ál. 2003), árboles dispersos en potreros y cercas vivas (Villanueva et ál. 2005; Sánchez et ál. 2008), y barreras rompevientos y siembra de árboles maderables en plantaciones lineales (Faustino, 1998; Beer 1998; Beer et ál. 2003); y

d) el fomento de prácticas de gestión de pasturas con potencial para aumentar el secuestro de carbono en fincas ganaderas (Conant et ál. 2001).
En este manual se promueven las opciones antes citadas porque permiten a los productores aumentar su productividad, generar servicios ambientales y mejorar su condición socioeconómica.

3.5.1. Protección de áreas de bosque existentes en fincas ganaderas

Para lograr una adecuada protección de las áreas de bosque existentes se recomienda que el finquero cerque la orilla del bosque, para evitar el ingreso del ganado y la extracción de productos maderables (madera, postes) y no maderables (plantas ornamentales). Si se da la extracción de productos, se espera que se haga mediante un plan de manejo sostenible de los recursos naturales existentes (Post y Kwon 2000).

Cerca de protección del bosque en una finca ganadera.
3.5.2. Regeneración natural

Una buena opción para incrementar la captura de carbono en una finca consiste en la liberación de las zonas críticas o menos aptas para la producción para que se conviertan en bosques que funcionarán como depósitos de carbono y al mismo tiempo para que cumplan con otra serie de beneficios como producción de agua, protección del suelo, conservación de biodiversidad, fuente de productos maderables y no maderables. Para lograrlo se requiere un plan de finca donde se promueva el uso del suelo según su potencial y la intensificación sostenible de la producción ganadera, que significa aumentar la productividad en las áreas de mayor vocación y destinar las menos aptas para la gestión ambiental de la finca (Uribe et ál. 2011).

El costo en que incurre un ganadero para establecer una hectárea de regeneración natural o de bosque es de 108.990 colones pues se debe hacer una cerca de 400 m para cercar el terreno para evitar que entre el ganado.

Área liberada para regeneración natural en una finca ganadera.
En ocasiones, si hay una parte de la finca con una división natural como una quebrada o río que impida el ingreso del ganado a la zona protegida, el ganadero no incurría en ningún gasto.

3.5.3. Plantaciones forestales

Las plantaciones forestales son lotes compactos de la finca donde se siembran árboles, generalmente, en altas densidades (p. ej., al inicio, de 3 x 3 m, y luego se van realizando raleos donde se cortan árboles que pueden ser utilizados por el productor). Las plantaciones forestales pueden almacenar, en 20 años, alrededor de 120 t de carbono por ha en la biomasa de las leñosas y unas 200 t/ha en el suelo. Por lo tanto, las plantaciones forestales constituyen una importante estrategia de mitigación de GEI para las fincas ganaderas (Kraenzel et ál. 2003).

Plantación maderable de pino.
3.5.4. Árboles dispersos en potreros

Los árboles dispersos en potreros son una modalidad de sistemas silvopastoriles en donde los árboles, ya sean sembrados por el productor o provenientes de la regeneración natural, se dejan crecer en el potrero para alcanzar los propósitos que el productor desea. Se recomienda establecer árboles en potreros porque pueden proporcionar al productor y a la sociedad diversos bienes para el autoconsumo y la venta, y generar servicios ambientales (Toruño et ál. 2014).

Los criterios que deben emplearse para una adecuada selección de las especies por establecer en los potreros son los siguientes:
• que la especie se adapte al tipo de suelo y al clima de la región donde se encuentra la finca;
• que el producto tenga alto valor comercial;
• que cumpla con diversas funciones;
• que el follaje y los frutos no sean tóxicos para el ganado;
• que la especie tenga raíces profundas y tolere la competencia por luz, agua y nutrientes;
• que la especie resista el ataque de plagas y enfermedades;
• que la especie sea fácil de reproducir; y
• que genere servicios ambientales (Casasola et ál. 2003).

Los árboles dispersos en potreros cumplen múltiples funciones productivas y de conservación.
Algunos aspectos clave para asegurar un buen establecimiento de árboles provenientes de la regeneración natural en los potreros son los siguientes:

- Conservar los árboles semilleros de especies con alto valor comercial (leña, frutos, madera, sombra, forraje) o de uso local (madera para horcones y postes).

- No cortar los arbolitos que están bien distribuidos, presentan buena apariencia, están rectos y son fuertes cuando se chapea el potrero.

La protección de los árboles dispersos es importante para asegurar su establecimiento, rápido crecimiento y calidad de los bienes y servicios.

- Hacer una ronda de 0,5 m alrededor de cada arbolito, para controlar las malezas que compiten por obtener agua, luz y nutrientes.
• Proteger los arbolitos con una malla metálica, para que no se los coma el ganado, y quitársela cuando alcancen 1,5 m de altura.

• Evitar el ataque de los insectos.

• No aplicar herbicidas en los potreros, ya que los herbicidas queman los árboles jóvenes, afectan la flora y la fauna, y contaminan las aguas.

• No sobrepastorear el potrero, sino manejar una adecuada carga animal, y controlar el número y tamaño de los animales que entran al potrero, según el forraje disponible y la elevación de la pendiente, para evitar que los animales dañen los árboles y compacten el suelo.

Rodajea de un árbol disperso proveniente de la regeneración natural en un potrero.

Aplicación de herbicidas con consecuencias negativas para los árboles jóvenes que crecen en potreros.
• No utilizar fuego para eliminar la maleza, ya que el fuego mata a los arbolitos jóvenes y libera CO$_2$ al ambiente (Casasola et ál. 2003).

El uso de fuego para control de malezas reduce la regeneración natural de árboles en las pasturas.

De igual forma, algunos aspectos que se deben considerar para asegurar un adecuado establecimiento de los árboles que se siembran en los potreros son los siguientes:

• Seleccionar semilla de alta calidad, proveniente de árboles ubicados en sitios con condiciones de suelo y clima similares a donde se piensa sembrar los árboles.

• Hacer un vivero.
Vivero de especies forestales.

- Seleccionar en el vivero árboles de buena apariencia, libres de enfermedades y vigorosos.
• Preparar los árboles que estén listos para la siembra antes del comienzo de las lluvias.

• Trasladar los árboles al campo con cuidado, para que sus hojas, tallos y raíces no se rompan.

• Marcar en el potrero los sitios donde va a sembrar los árboles.

• Realizar la apertura de los hoyos, poniendo de un lado el suelo superficial y del otro el suelo de la parte más profunda del hoyo.

Forma correcta de abrir un hoyo para la siembra de árboles.
• Colocar fertilizante en el fondo de cada hoyo.

Aplicación de fertilizante en el fondo del hoyo para asegurar un adecuado establecimiento de los árboles.

• Tomar el árbol. Quitarle la bolsa. Colocarlo en el hoyo en posición vertical. Ponerle, primero, la tierra que se saca de la parte superficial y, luego, la del fondo del hoyo. Tapar el hoyo con 20 cm de tierra. Cada vez que se pone tierra, majarla para evitar que queden espacios con aire o se encharque con agua.

Majado de la tierra alrededor del árbol.
• A cada árbol, hacerle una ronda y protegerlo con una malla, de la misma manera que se hace con los árboles de regeneración.
• No aplicar herbicidas ni utilizar fuego para controlar las malezas en el potrero.
• Pastorear cada potrero donde se sembraron arbolitos de manera similar a los potreros donde nacieron arbolitos provenientes de la regeneración.
• Replantar los árboles que se perdieron.
• Cuando sea necesario, controlar las malezas, realizar la poda y el raleo (Casasola et ál. 2003).

Costos de establecimiento
Los costos de establecimiento de una hectárea de pastura son de 795,3 USD; del cuidado de los árboles que provienen de la regeneración natural son 14 USD; y los costos de la siembra y el cuidado de 35 árboles/ha plantados son de 139,69 USD (Cuadro 20).

Cuadro 20. Costos de establecimiento de una pastura, cuidado de árboles provenientes de regeneración natural, y siembra y cuidado en una hectárea de pastura

<table>
<thead>
<tr>
<th>Establecimiento de la pastura</th>
<th>Unidad</th>
<th>Costo unitario (USD)</th>
<th>Cantidad</th>
<th>Costo Total (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapia del terreno</td>
<td>Jornal</td>
<td>18,7</td>
<td>2,9</td>
<td>53,8</td>
</tr>
<tr>
<td>Limpieza del terreno con herbicida</td>
<td>Jornal</td>
<td>18,7</td>
<td>2,9</td>
<td>53,8</td>
</tr>
<tr>
<td>Siembra del pasto</td>
<td>Jornal</td>
<td>18,7</td>
<td>10,2</td>
<td>189,9</td>
</tr>
<tr>
<td>Fertilización</td>
<td>Kilogramo</td>
<td>46</td>
<td>2,95</td>
<td>135,7</td>
</tr>
<tr>
<td>Cercado del terreno</td>
<td>Metro</td>
<td>400</td>
<td>0,9</td>
<td>345,7</td>
</tr>
<tr>
<td>Manejo de malezas y sombra</td>
<td>Jornal</td>
<td>18,7</td>
<td>0,9</td>
<td>16,4</td>
</tr>
<tr>
<td>Costo establecimiento de la pastura</td>
<td></td>
<td></td>
<td></td>
<td>795,3</td>
</tr>
<tr>
<td>Manejo de los árboles de regeneración natural</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Establecimiento de árboles usando plántulas de vivero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo de 35 árboles</td>
<td>Plántula</td>
<td>0,52</td>
<td>35</td>
<td>18,35</td>
</tr>
<tr>
<td>Siembra de los árboles</td>
<td>Jornal</td>
<td>18,7</td>
<td>0,4</td>
<td>7,34</td>
</tr>
<tr>
<td>Protección de los árboles</td>
<td>Jornal</td>
<td>2,9</td>
<td>35</td>
<td>100</td>
</tr>
<tr>
<td>Limpieza de los árboles sembrados</td>
<td>Jornal</td>
<td>18,7</td>
<td>0,7</td>
<td>14</td>
</tr>
<tr>
<td>Costo del establecimiento de árboles usando plántulas de vivero</td>
<td></td>
<td></td>
<td></td>
<td>139,69</td>
</tr>
</tbody>
</table>

Tasa de cambio 1 USD = 535 colones costarricenses (enero 2015).

Fuente: Elaborado con información propia.
3.5.5. Cercas vivas

Una cerca viva es un arreglo lineal sembrado con leñosas (árboles, arbustos o palmas) que sirven de soporte al alambre de púas o liso, cuya finalidad es delimitar la propiedad o marcar las divisiones que separan los diferentes usos de la tierra (agricultura, bosques, potreros, etc.) en una propiedad (Budowsky 1987). Una cerca viva puede estar constituida por especies leñosas, o por la combinación de especies leñosas con postes muertos.

Según la cantidad de especies y altura de las copas, las cercas vivas se definen como: 1) simples o 2) multiestrato.
Las cercas vivas simples son aquellas que tienen una o dos especies dominantes. Generalmente, las especies cumplen solamente una función, tienen alta capacidad de rebrote y se podan cada dos años (Sánchez et al. 2008). Algunos ejemplos son el poró (*Erythrina spp*), el madero negro (*Gliricidia sepium*), el sauco (*Sambucus spp*), el güitite (*Acnistus arborescens*), el higuito (*Ficus spp*) y el higuerrón (*Ficus ssp*). Las cercas vivas multiestrato utilizan varias especies leñosas de diferentes alturas y usos. Por ejemplo, maderables, frutales, forrajeras, medicinales, ornamentales, etc. En general, las multiestrato no se podan, lo que da lugar a una mayor cobertura arbórea durante todo el año.

Se recomienda establecer cercas vivas multiestrato porque no requieren poda y están compuestas de diferentes especies de árboles, los cuales generan diversos bienes y servicios ambientales. Esto garantiza una variedad de productos para el autoconsumo y la venta. Además, acumulan mayor cantidad de carbono que las cercas vivas simples. Villanueva *et al.* (2008) recomiendan algunos criterios que pueden ser útiles para seleccionar especies para establecer cercas vivas en una finca ganadera:

a) que la especie sea nativa o se adapte bien a la zona;
b) que ofrezca productos de interés para la finca y para el mercado;
c) que su follaje o sus frutos no sean tóxicos para los animales domésticos o silvestres presentes en la finca;
d) que la especie presente múltiples usos;
e) que su propagación por semilla o estaca sea fácil; y
f) que genere servicios ambientales.

El Cuadro 21 muestra una lista de especies; de las cuales, algunas pueden ser utilizadas en cercas vivas en fincas de lechería especializada.
Cuadro 21. Lista de especies con potencial para ser utilizadas en fincas de lechería especializada

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Zona de vida</th>
<th>Sistema silvo-pastoril</th>
<th>Usos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprés</td>
<td>Cupressus lusitánica</td>
<td>BhmB, BhP, BmhBmb</td>
<td>ADP, CV, CR, PL, CR</td>
<td>Madera, leña, sombra</td>
</tr>
<tr>
<td>Jaúl</td>
<td>Alnus acuminata</td>
<td>BhmB, BhP, BmhBmb</td>
<td>ADP, PL</td>
<td>Madera, leña</td>
</tr>
<tr>
<td>Quizarrá</td>
<td>Nectandra reticulata</td>
<td>BhmB, BhP, BhBmb</td>
<td>ADP, CV</td>
<td>Madera, leña</td>
</tr>
<tr>
<td>Cedro dulce</td>
<td>Cedrela tonduzi</td>
<td>BhmB, BhP, BmhBmb</td>
<td>ADP, PL, CR</td>
<td>Madera, sombra, protección del viento</td>
</tr>
<tr>
<td>Caoba</td>
<td>Swietenia macrophylla</td>
<td>Bht, Bsht</td>
<td>ADP</td>
<td>Madera</td>
</tr>
<tr>
<td>Laurel</td>
<td>Cordia alliodora</td>
<td>Bht, Bsht</td>
<td>ADP</td>
<td>Madera</td>
</tr>
<tr>
<td>Pino</td>
<td>Pinus spp</td>
<td>Bht, Bsht</td>
<td>ADP, PL, CR</td>
<td>Madera, protección del viento</td>
</tr>
<tr>
<td>Eucalipto</td>
<td>Eucaliptus spp</td>
<td>Bht, Bsht</td>
<td>ADP, PL</td>
<td>Madera, leña</td>
</tr>
<tr>
<td>Casuarina</td>
<td>Casuarina equisetifolia</td>
<td></td>
<td>CR</td>
<td>Protección del viento</td>
</tr>
<tr>
<td>Roble</td>
<td>Quercus spp</td>
<td>Bht, Bsht</td>
<td>ADP, PL</td>
<td>Madera, leña</td>
</tr>
<tr>
<td>Guarumo</td>
<td>Cecropia spp</td>
<td>Bht, Bsht</td>
<td>RN</td>
<td>Hospedero de animales silvestres</td>
</tr>
<tr>
<td>Trueno</td>
<td>Ligustrum sepium</td>
<td>BmhB, BmhBmb</td>
<td>CR</td>
<td>Protección del viento</td>
</tr>
<tr>
<td>Copalchi</td>
<td>Croton reflexiolius</td>
<td>BmhB, BmhBmb</td>
<td>CR</td>
<td>Protección del viento</td>
</tr>
<tr>
<td>Tubú</td>
<td>Montanoa guatemalensis</td>
<td>BmhB, BmhBmb</td>
<td>CR</td>
<td>Protección del viento</td>
</tr>
<tr>
<td>Mora</td>
<td>Manclura tinctoria</td>
<td>BmhBmb</td>
<td>ADP</td>
<td>Madera, fruto para aves</td>
</tr>
<tr>
<td>Chilamate, higuero, higuito</td>
<td>Ficus spp</td>
<td>Bht, Bsht</td>
<td>ADP, CV</td>
<td>Sombra, fruta para aves</td>
</tr>
<tr>
<td>Güttite</td>
<td>Acnistus arborescens</td>
<td>BmhBmb</td>
<td>ADP, CV</td>
<td>Fruta para aves</td>
</tr>
<tr>
<td>Tucúco</td>
<td>Ardisia spp</td>
<td>BmhBmb</td>
<td>ADP</td>
<td>Fruta para aves</td>
</tr>
<tr>
<td>Madero negro</td>
<td>Gliricidia sepium</td>
<td>Bht, Bsht</td>
<td>CV</td>
<td>Sombra, postes y follaje para el ganado</td>
</tr>
<tr>
<td>Poró</td>
<td>Erythrina spp</td>
<td>Bht, Bsht</td>
<td>ADP, CV</td>
<td>Sombra, postes y follaje para ganado</td>
</tr>
<tr>
<td>Guayaba</td>
<td>Psidium guajava</td>
<td>Bht, Bsht</td>
<td>ADP, CV</td>
<td>Fruta para animales silvestres</td>
</tr>
<tr>
<td>Limón, naranja</td>
<td>Citrus spp</td>
<td>Bht, Bsht</td>
<td>ADP</td>
<td>Fruta para humanos</td>
</tr>
<tr>
<td>Guaba</td>
<td>Inga spp</td>
<td>Bht, Bsht</td>
<td>ADP</td>
<td>Fruta para humanos</td>
</tr>
<tr>
<td>Manzana rosa</td>
<td>Eugenia malaccensis</td>
<td>BhmB, BhP, BmhBmb</td>
<td>CR</td>
<td>Frutos, delimitar propiedades, protección del viento</td>
</tr>
<tr>
<td>Itabo</td>
<td>Yucca elephatipes</td>
<td>Bht, Bsht</td>
<td>CV</td>
<td>Delimitar propiedades, estabilización de tierras</td>
</tr>
<tr>
<td>Caña india</td>
<td>Dracaena spp</td>
<td>Bht, Bsht</td>
<td>CV</td>
<td>Delimitar propiedades, estabilización de tierras</td>
</tr>
<tr>
<td>Caña de azúcar</td>
<td>Sacharum officinarum</td>
<td>Bsh, BmhB, BhP, BmhBmb ht.</td>
<td>CR</td>
<td>Delimitar propiedades, protección del viento</td>
</tr>
</tbody>
</table>

ADP = árboles dispersos en potreros; CV = cercas vivas; CR = cortinas rompevientos; PL = plantaciones lineales; BmhBmb = bosque muy húmedo montano bajo; Bsht = bosque subhúmedo tropical; Bht = bosque húmedo tropical.
Para establecer **cercas vivas simples** en fincas lecheras se deben seguir los siguientes pasos:

\[a) \text{ Cosecha y manejo de las estacas} \]

Se deben seleccionar estacas rectas y sanas, con un longitud de 2 a 2,5 m y un grosor de 5 a 15 cm. Antes de plantar la parte inferior del estacón, se corta la punta tipo lápiz, mientras que la parte superior se corta en bisel para permitir que escurra el agua de lluvia. Según la experiencia de campo, la cosecha de estacas es preferible realizarla en la fase lunar de cuarto menguante; ya que se asocia con menos daño para el árbol del cual se cortan y mayor prendimiento de las estacas. También existe la práctica de almacenar bajo sombra las estacas por 1 o 2 semanas antes de la siembra, para estimular acumulación de reservas en la base y facilitar un buen enraizamiento (Villanueva et ál. 2008).

\[b) \text{ Plantación} \]

En lugares donde llueve todo el año, la plantación se hace en cualquier momento. En lugares con estación seca bien definida, los productores plantan los estacones en la época seca, especialmente, en los meses de febrero, marzo o abril, en coincidencia con la poda. Se recomienda plantar el estacón a una profundidad de 30 a 40 cm (Villanueva et ál. 2008).

\[c) \text{ Distancia entre postes} \]

Cuando la cerca es nueva, se colocan postes muertos cada 10 o 15 m, y luego se plantan los estacones entre 1 y 2 m. En cercas muertas ya establecidas, los postes vivos son plantados según el distanciamiento señalado anteriormente. El alambre de púas es amarrado al estacón con algún tipo de cuerda o piola en los primeros 3 a 6 meses, mientras que los estacones logran enraizarse. Luego de este período, el alambre puede sostenerse con grapas (Villanueva et ál. 2008).
d) Costos de establecimiento

Los Cuadros 22 y 23 muestran los costos estimados del establecimiento de cercas vivas simples y la transformación de cercas muertas hacia cercas vivas. El establecimiento de cercas vivas puede significar un ahorro de al menos 24%, en comparación con las cercas muertas. En cercas vivas simples se consideró si la cerca es nueva o si es transformación de cerca muerta a viva (Villanueva et ál. 2010).
Cuadro 22. Costo estimado del establecimiento de una cerca viva (colones costarricenses por kilómetro)

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poste muerto</td>
<td>60</td>
<td>16.638,5</td>
</tr>
<tr>
<td>Estacones*</td>
<td>767</td>
<td>22.791</td>
</tr>
<tr>
<td>Alambre de púas (rollos)</td>
<td>12</td>
<td>123.906</td>
</tr>
<tr>
<td>Grapas (kg)</td>
<td>5</td>
<td>2.140</td>
</tr>
<tr>
<td>Mano de obra (jornales)</td>
<td>36</td>
<td>107.000</td>
</tr>
<tr>
<td>Costo total</td>
<td></td>
<td>272.475,5</td>
</tr>
</tbody>
</table>

* Los estacones incluyen 15% de replantes. La distancia de siembra es 1,5 m. Los postes muertos y estacones incluyen los costos de aprovechamiento en finca. Tasa de cambio 1 USD = 535 colones costarricenses (enero 2015).

Cabe mencionar que un alto porcentaje de fincas de lechería especializada tienen el potencial de transformar sus cercas muertas en cercas vivas (Cuadro 23).

Cuadro 23. Costos estimados de transformación de una cerca muerta a cerca viva simple (colones costarricenses por kilómetro)

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estacones*</td>
<td>767</td>
<td>22.791</td>
</tr>
<tr>
<td>Mano de obra (jornales)</td>
<td>12</td>
<td>35.684,5</td>
</tr>
<tr>
<td>Costo total</td>
<td></td>
<td>58.475,5</td>
</tr>
</tbody>
</table>

* Los estacones incluyen 15% de replantes. La distancia de siembra es 1,5 m. Los postes muertos y estacones incluyen los costos de aprovechamiento en finca. Tasa de cambio 1 USD = 535 colones costarricenses (enero 2015).

Para establecer cercas vivas multiestrato se recomienda seguir los siguientes procedimientos:

a) **Especies frutales y maderables**

Se recomienda la siembra de plántulas provenientes de vivero. Se pueden adquirir plántulas en viveros fuera de la finca y el establecimiento es inmediato.
b) **Vivero en finca**

El manejo requerido para la producción de plántulas en vivero es el siguiente:

- Seleccione semilla de buena calidad.
- Prepare una cama o germinador con materia orgánica y arena fina. Coloque las semillas en hileras a una distancia de 5 cm o riéguelas al voleo. Luego, cúbralas con una capa fina de tierra.
- Cuando las plántulas tengan un tamaño de 5 cm, trasplántelas a bolsas de plástico, colóquelas en un vivero y cuídelas hasta que se lleven al campo (Villanueva *et ál.* 2008).
- Trasplante las plántulas a bolsas plásticas del vivero.
- Realice el trasplante o la siembra definitiva en el campo cuando las plantas tengan entre 20 y 30 cm o el tamaño de una cuarta. La distancia de siembra usada en árboles de especies maderables o frutales en cercas vivas es de 8 a 10 metros; eso significa que se pueden sembrar de 100 a 125 árboles por kilómetro (Villanueva *et ál.* 2008).

e) **Costos de establecimiento**

El Cuadro 24 muestra el costo estimado del establecimiento de cercas vivas multiestrato bajo diferentes escenarios (cerca nueva o transformación de una cerca muerta).
Cuadro 24. Costo estimado del establecimiento de una cerca viva multiestrato (colones costarricenses por kilómetro)

<table>
<thead>
<tr>
<th>Material</th>
<th>Establecimiento de cerca nueva</th>
<th>Transformación a partir de cerca muerta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cantidad</td>
<td>Costo</td>
</tr>
<tr>
<td>Poste muerto</td>
<td>60</td>
<td>16.639</td>
</tr>
<tr>
<td>Alambre de púas (rollos)</td>
<td>12</td>
<td>123.906</td>
</tr>
<tr>
<td>Grapas (kg)</td>
<td>5</td>
<td>2.140</td>
</tr>
<tr>
<td>Estacones* (madero negro o poró)</td>
<td>575</td>
<td>17.120</td>
</tr>
<tr>
<td>Plántulas de frutales (guayaba, limón)</td>
<td>21</td>
<td>6.242</td>
</tr>
<tr>
<td>Plántulas de maderables (ciprés, jaúl, eucalipto, cedro)</td>
<td>104</td>
<td>18.547</td>
</tr>
<tr>
<td>Insecticida (kg)</td>
<td>1</td>
<td>5.350</td>
</tr>
<tr>
<td>Mano de obra (jornales)</td>
<td>25</td>
<td>74.312</td>
</tr>
<tr>
<td>Costo total</td>
<td>264.254</td>
<td></td>
</tr>
</tbody>
</table>

*Estacones incluye 15% de replantes; frutales y maderables incluye 10% de resiembras. La distancia de siembra entre estacones fue de 2 m. Los postes muertos y estacones incluyen los costos de aprovechamiento en finca. Tasa de cambio 1 USD = 535 colones costarricenses (enero 2015).

En resumen, una cerca viva multiestrato de un kilómetro de longitud estaría conformada por 575 individuos de madero negro o poró, güitite, 21 árboles de cítricos o guayaba, y 104 árboles de un maderable.

3.5.6. Cortinas rompevientos

Las cortinas rompevientos son hileras de árboles, de arbustos o de ambos, de diferentes alturas y dispuestas en sentido opuesto a la dirección principal del viento. Se establecen para reducir la velocidad del viento, reducir o evitar la erosión causada por el viento, o regular el microclima a nivel de finca. En fincas ganaderas, su importancia radica en el mejoramiento o mantenimiento de la productividad de leche y carne, al regular el microclima; lo que permite que el ganado vacuno presente un mejor desempeño. Además, generan productos para venta y consumo (leña, madera, frutas, etc.), y servicios ambientales (conservación del suelo, de la biodiversidad y del agua).
Cortinas rompeviento en una finca ganadera.

Para diseñar cortinas rompevientos se recomienda considerar los siguientes aspectos:

- Conocer los objetivos por los cuales se establece la cortina (p. ej., regulación del microclima para el ganado).
- Definir las especies leñosas (árboles y arbustos) que se piensan establecer.
- Definir la disposición entre hileras y la orientación de la cortina con respecto al viento.
- Definir la posición de las especies entre hileras.
- Considerar los aspectos socioeconómicos que influyen en el establecimiento y manejo de las cortinas rompevientos.
- Definir la altura y distancia efectiva que se desea proteger.
- Establecer la permeabilidad de la cortina.
- Determinar el ancho y la forma de la cortina.
- Calcular las dimensiones y los espaciamientos dentro de las cortinas, y entre las cortinas y los pastos de las parcelas adyacentes (Faustino 1998).
A continuación se describen los aspectos relevantes que definen el diseño de una cortina rompevientos.

a) *Altura y distancia efectiva protegida*

Una cortina es efectiva cuando logra disminuir la velocidad del viento en al menos 20%. De esta manera, la zona de protección se extiende sobre una distancia de siete veces la altura de la cortina del lado del viento, y de 15 a 20 veces del lado contrario al viento. La altura de la cortina está determinada por la especie seleccionada, el estrato superior y la calidad del sitio (Faustino 1998).
b) **Permeabilidad**

La cortina debe ser permeable o porosa; o sea, debe dejar pasar 3% del viento. Otro punto importante es la uniformidad en la densidad del follaje de la cortina, desde el extremo superior hasta la base de la cortina. No debe haber áreas discontinuas u hoyos (Faustino 1998).

c) **Ancho, forma y posición de la cortina**

Se recomienda que la cortina tenga un ancho entre 4 y 15 m. En fincas pequeñas, se puede colocar una sola hilera. Las cortinas multiestrato son más eficientes para controlar el viento. Idealmente, se deben establecer de manera perpendicular a la dirección principal del viento (Faustino 1998).

Ancho, forma y posición de los árboles en una cortina rompeviento.

d) **Cálculo de distancias**

La distancia entre cortinas está determinada por: la velocidad máxima de los vientos; el grado de resistencia del suelo y del cultivo; y la altura de las especies seleccionadas para la cortina.
Para calcular la distancia que debe utilizarse entre cortinas, se recomienda utilizar la siguiente fórmula (Paulet 1973):

\[D = 17 \times H \times (Vmi/Vac) \times \cos O \]

Donde:
- \(D \) = distancia entre cortinas
- \(H \) = altura de la cortina
- \(Vmi \) = velocidad mínima del viento (a 17 m de altura, capaz de provocar movimiento de partículas en el suelo o erosión)
- \(Vac \) = velocidad actual del viento (a 17 m de altura)
- \(O \) = ángulo de desviación del viento, prevaleciente, medido desde la perpendicular de la cortina
- \(Vmi \) = generalmente igual a 35 km/hora (la ecuación es válida si la velocidad del viento es menor que 65 km/hora)

Uso de fórmula para el cálculo de distancias

\[
\begin{align*}
Vmi &= 35 \text{ km/hora} \\
Vac &= 55 \text{ km/hora} \\
H &= 20 \text{ m} \\
O &= 30
\end{align*}
\]

\[D = 17 \times H \times (Vmi/Vac) \times \cos O \]
\[D = 17 \times 20 \text{ m} \times (35 \text{ km/hora}/55 \text{ km/hora}) \times \cos (30) = 340 \text{ m} \times 0,636 \times 0,866 \]
\[D = 187,2 \text{ m} \]
e) Establecimiento y manejo de cortinas rompientos

Para un exitoso establecimiento de las especies que se van a colocar en la cortina rompientos, se recomienda seguir los mismos pasos recomendados para un adecuado establecimiento de árboles en potreros (Casasola et ál. 2003). Es importante seleccionar previamente las especies por utilizar (Cuadro 21) y que el productor discuta con un técnico las distancias de siembra de las especies que usará en la cortina rompientos.

Estudio de caso sobre cortinas rompientos en Monteverde, Costa Rica

El proyecto en la zona de Monteverde impulsó la siembra de cortinas rompientos. Se pasó de tener 40 fincas con cortinas rompientos en 1989, a 260 fincas en el año 1995. En la zona, 90% de las fincas establecieron cortinas rompientos. El proyecto cumplió los objetivos de mejorar la producción de leche, madera y leña, y generar servicios ambientales (Faustino 1998).
3.5.7. Árboles maderables o frutales en líneas

Los árboles maderables o frutales pueden ser sembrados en líneas en los linderos de una propiedad para dividir los usos de la tierra, o a la orilla de caminos internos o externos en la finca. Los árboles maderables en líneas tienen por objetivo producir madera, postes o leña (Beer 1998).

Los criterios para la selección de sitios donde se planean sembrar maderables en líneas son:

- preferiblemente bien drenados;
- con suelos de mediana a alta fertilidad;
- lejos de cuerpos de agua o que sean de difícil acceso (puede haber dificultades legales y de tipo físico para el aprovechamiento de los maderables).

Los criterios para la selección de especies maderables que pueden ser utilizadas en plantaciones maderables en líneas son:

- que la especie tenga alto valor comercial o uso local;
- rápido crecimiento apical;
- autopoda en condiciones de campo;
- disponibilidad de semilla de alta calidad;
- selección de plantas de alta calidad en viveros;
- resistencia a plagas o enfermedades;
- copa delgada y abierta; y
- poco exigentes en su manejo (Beer 1998).

a) **Establecimiento de árboles maderables en líneas**

Para un exitoso establecimiento de las especies maderables que se van a colocar en líneas, se recomienda seguir los pasos que fueron anteriormente recomendados para un adecuado establecimiento de los árboles en los potreros (Casasola et ál. 2003). Es importante que se seleccionen las especies por utilizar previamente, y que el productor discuta con un técnico las distancias de siembra a las cuales va a colocar las especies dentro de la línea.
de maderables. Se recomienda realizar una adecuada preparación del suelo antes de la siembra.

b) **Costos de establecimiento y mantenimiento de árboles en líneas**

Los costos de establecimiento de 40 árboles maderables plantados en una línea de 100 m en condiciones favorables fueron de 8,5 y 22,5 USD en condiciones desfavorables. Los costos de mantenimiento para los primeros cinco años fueron de 18,5 y 84 USD para ambas condiciones en el trópico húmedo costarricense (Beer 1998).

El Cuadro 21 presenta la lista de las especies de interés que pueden ser utilizadas en los sistemas silvopastoriles como árboles dispersos en potreros, cercas vivas, cortinas rompevientos y plantaciones en líneas en fincas ganaderas dedicadas a la lechería especializada en Costa Rica.

3.6. Manejo de especies leñosas en sistemas silvopastoriles

Para lograr el objetivo que el productor se planteó originalmente, al dejar o establecer árboles en los diferentes sistemas silvopastoriles presentes en la finca, es necesario realizar un adecuado manejo de los árboles. El manejo de los árboles en los diferentes sistemas silvopastoriles consiste en realizar la resiembra de árboles, controlar las malezas, fertilizar las plantas, realizar las podas y los raleos, controlar las plagas y enfermedades, y aprovechar los árboles (Villanueva et ál. 2008; Casasola et ál. 2003; López et ál. 2014).

Se recomienda dejar un círculo de 1 metro alrededor de cada árbol durante el primer año. A partir del momento en que las malezas compiten con el árbol, se recomienda realizar chapeas periódicas o deshierbas. Sólo en caso justificado de ataques de gramíneas muy agresivas se debe usar herbicida. Se sugiere fertilizar los árboles al momento de establecerlos, utilizando la información obtenida de análisis de suelo.

Poda

Una de las labores de manejo o mantenimiento más relevantes para un adecuado crecimiento de los árboles maderables es la poda.
Figura 8. Poda de árboles maderables.

Ésta consiste en eliminar algunas ramas enfermas o malformadas de las copas de los árboles. En las cercas vivas, donde se utilizan especies de rebrote (comunes en cercas vivas simples), se realizan podas cada dos años. Muchos productores llevan a cabo la poda durante el cuarto menguante, porque se cree que los cortes causan menos daño a los árboles en esta fase lunar. No se recomienda podar más de 30% de la copa de un árbol (Villanueva et ál. 2008).

Las funciones de la poda son las siguientes:

• reducir el exceso de sombra en las pasturas;
• darle forma a las copas;
• evitar el volcamiento de árboles por copas muy grandes;
• darle forma al fuste de los árboles maderables;
• cosechar estacones;
• promover la producción de forraje para animales; y
• fomentar una mayor y mejor producción de árboles maderables.

Raleo

Otra práctica importante en el manejo de árboles en sistemas forestales y silvopastoriles es el raleo. Éste consiste en aprovechar o eliminar árboles cuando sus copas se juntan o tienen mala formación. Cada especie necesita un espacio mínimo óptimo para su crecimiento, el cual aumenta conforme se desarrolla. Si hay mucha competencia entre árboles, el resultado es el desarrollo vertical con copas estrechas y diámetros de fuste delgado, que no son óptimos para ser aserrados. El raleo estimula el crecimiento de las copas de los árboles remanentes y, por tanto, el engrosamiento de los fustes (Casasola et ál. 2003). El raleo es una práctica poco común en las especies leñosas (árboles o arbustos) establecidas en cercas vivas ya que, generalmente, estas especies son sembradas a una distancia específica (entre 8 y 10 m); sin embargo, es muy utilizada en plantaciones maderables, cortinas rompevientos y plantaciones de maderables en líneas sembradas con árboles con alta densidad inicial.

Las funciones del raleo son las siguientes:

- reducir la competencia por luz, agua y nutrientes del suelo;
- promover el rápido crecimiento de los árboles;
- generar mayor calidad y rendimiento de madera; y
- producir mayor calidad y rendimiento de frutos.

El manejo de podas y raleos son prácticas silviculturales que han demostrado ser muy importantes para producir madera de alta calidad. Cuando no se aplican estas prácticas, la competencia entre árboles es muy alta, el grosor del fuste de los árboles disminuye y se presenta una mayor cantidad de nudos, que hacen que la calidad de la madera sea menor.

3.7. Beneficios de los árboles en los sistemas silvopastoriles

Los sistemas silvopastoriles (árboles dispersos en potreros y cercas vivas) brindan sombra a los animales. Esto hace que las vacas que pastorean en potreros con
sombra presenten menores tasas respiratorias, consuman más alimento y produzcan de 10 a 22% más leche que las vacas que pastorean a pleno sol (Souza 2002, Betancourt et ál. 2003).

Importancia de la sombra en potreros para reducir el estrés calórico en el ganado.

Los árboles ofrecen follajes y frutos para la alimentación el ganado (Esquivel 2007);
producen leña, madera y postes (Muñoz et ál. 2003; Chagoya 2004);

a) Madera proveniente de árboles presentes en sistemas silvopastoriles y b) postes extraídos de una cerca viva de poró en Santa Cruz de Turrialba, Costa Rica.

mejoran la infiltración del agua llovida en los suelos (Salas 2011) y reducen la escorrentía superficial (Ríos et ál. 2007); mejoran la fertilidad del suelo por medio del reciclaje de nutrientes (Sandoval 2006);

Figura 9. Reciclaje de nutrientes mediante árboles en sistemas silvopastoriles
e incrementan la biodiversidad (Sáenz et ál. 2007).

Los árboles contribuyen con la biodiversidad en fincas ganaderas.

Por lo tanto, las fincas con sistemas silvopastoriles son más rentables y sostenibles que las fincas manejadas de manera tradicional (Villanueva et ál. 2010).

3.8. Fijación y almacenamiento de carbono en sistemas de pasturas y silvopastoriles

El interés de manejar pasturas y sistemas silvopastoriles para fijar carbono ha aumentado en los últimos años en el sector ganadero. Veldkamp (1994) encontró pérdidas netas de 2 a 18% de carbono almacenado en los primeros 50 cm del suelo,

El manejo que reciben las áreas con pasturas tropicales es crítico, e influye si el suelo bajo pasturas se comporta como fuente o como sumidero de carbono. En áreas de pasturas bien manejadas, cantidades significativas de materia orgánica (raíces y hojarasca) son recicladas y acumuladas como carbono orgánico en el suelo (COS).

En Costa Rica, los sistemas silvopastoriles con diferentes especies y configuraciones de árboles almacenan altas cantidades de carbono, en relación con la regeneración natural y los bosques secundarios y primarios (Ibrahim et ál. 2007). En los sistemas silvopastoriles, la cantidad de carbono almacenado en el suelo y sobre el suelo (fijación de carbono), en la biomasa de las leñosas y pasturas, varía dependiendo de las condiciones climáticas y del suelo; las especies; las densidades y la edad de las leñosas; y la tolerancia de las especies a la sombra (Nyberg y Hogberg 1995; Jackson y Ash 1998) (Cuadro 25).
Cuadro 25. Carbono almacenado en usos de la tierra (ecosistemas evaluados en Costa Rica)

<table>
<thead>
<tr>
<th>Ecosistema</th>
<th>Usos de la tierra</th>
<th>Carbono almacenado (Ton/ha)</th>
<th>Observaciones</th>
<th>Referencias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Suelo</td>
<td>Árboles sobre el suelo</td>
<td>Pasturas</td>
</tr>
<tr>
<td>Bosque húmedo tropical, Pocora, Costa Rica</td>
<td>Panicum maximum + Acacia mangium</td>
<td>ND</td>
<td>3,6</td>
<td>4,9</td>
</tr>
<tr>
<td></td>
<td>Panicum maximum + Eucalyptus deglupta</td>
<td>ND</td>
<td>3,4</td>
<td>4,4</td>
</tr>
<tr>
<td>Tierras volcánicas altas, Cordillera Volcánica Central, Costa Rica</td>
<td>Penisetum clandestinum monocultivo</td>
<td>494,0</td>
<td>0</td>
<td>12,5</td>
</tr>
<tr>
<td></td>
<td>Penisetum clandestinum + árboles</td>
<td>573,0</td>
<td>10,0</td>
<td>11,8</td>
</tr>
<tr>
<td></td>
<td>Cynodon nlemfuensis monocultivo</td>
<td>756,0</td>
<td>0</td>
<td>11,5</td>
</tr>
<tr>
<td></td>
<td>Cynodon nlemfuensis + árboles</td>
<td>624,0</td>
<td>2,6</td>
<td>9,1</td>
</tr>
<tr>
<td>Bosque lluvioso montano bajo, Moravia, Costa Rica</td>
<td>Pennisetum clandestinum</td>
<td>184,6</td>
<td>0,0</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Pennisetum clandestinum + Alnus acuminata</td>
<td>196,7</td>
<td>6,2 *</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Pastura mejorada + baja densidad de árboles</td>
<td>117,5</td>
<td>1,6</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Pastura natural + alta densidad de árboles</td>
<td>121,7</td>
<td>7,1</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Bosque secundario</td>
<td>116,7</td>
<td>90,7</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Brachiaria brizantha + Arachis pintoi</td>
<td>186,8</td>
<td>NA</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Acacia mangium + Arachis pintoi</td>
<td>160,7</td>
<td>12,8</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Brachiaria brizantha + Pastura enmalezada</td>
<td>153,0</td>
<td>NA</td>
<td>ND</td>
</tr>
</tbody>
</table>

* = carbono medido solo en troncos. NA = no aplica. ND = no disponible.

Por otra parte, se ha observado que las tasas de fijación de carbono varían entre 1 y 5 t C ha⁻¹ año⁻¹ (Cuadro 26).
Cuadro 26. Fijación de carbono/año (Ton/ha) en pasturas, silvopasturas y regeneración natural

<table>
<thead>
<tr>
<th>Ecosistema</th>
<th>Usos de la tierra</th>
<th>Tasa de fijación de carbono (Ton/ha/año)</th>
<th>Referencias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosque húmedo tropical, Guáspiles, Costa Rica</td>
<td>Brachiaria brizantha - Eucalyptus deglupta</td>
<td>1,8</td>
<td>Andrade 1999</td>
</tr>
<tr>
<td></td>
<td>Panicum maximum - Eucalyptus deglupta</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brachiaria decumbens - Acacia mangium</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panicum maximum - Acacia mangium</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>Tierras altas de la Cordillera Volcánica Central, Costa Rica</td>
<td>Pennisetum clandestinum monocultivo</td>
<td>5,2</td>
<td>Mora 2001</td>
</tr>
<tr>
<td></td>
<td>Pennisetum clandestinum + árboles</td>
<td>5,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cynodon nlemfuensis monocultivo</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cynodon nlemfuensis + árboles</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>Bosque tropical húmedo, Costa Rica</td>
<td>Brachiaria brizantha + Eucalyptus deglupta</td>
<td>1,8</td>
<td>Ávila 2001</td>
</tr>
<tr>
<td></td>
<td>Brachiaria brizantha + Acacia mangium</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>Trópico subhúmedo, Esparza, Costa Rica</td>
<td>Brachiaria brizantha</td>
<td>3,5</td>
<td>Amézquita et ál. 2008</td>
</tr>
<tr>
<td></td>
<td>Brachiaria brizantha + Arachis pintoi</td>
<td>4,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyparrhenia rufa</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regeneración natural</td>
<td>2,0</td>
<td></td>
</tr>
</tbody>
</table>

3.9. Prácticas de gestión de pasturas con potencial para aumentar el secuestro de carbono en fincas ganaderas

Además de establecer leñosas en diferentes usos de la tierra de las fincas ganaderas, se puede utilizar una serie de prácticas de gestión de pasturas que permiten conservar el carbono existente y mejorar el secuestro de carbono que realizan las herbáceas (gramíneas y leguminosas) en los potreros, el suelo o ambos. A continuación, se citan algunos ejemplos:

a. El manejo de un sistema de pastoreo rotacional, técnicamente bien manejado, con una carga animal óptima, puede conllevar a incrementos de 0,5 a 1 ton CO$_2$/ha/año en el aporte de C en la biomasa presente en el suelo.
b. La siembra de pastos y asocios con leguminosas, que mejoren la estructura de la comunidad vegetal, puede fijar 0.35 ton/ha/año (Conant et ál. 2001).

c. Se espera que las pasturas mejoradas, bien establecidas y manejadas, ubicadas entre los 800 y 1.200 m.s.n.m. en Costa Rica, puedan fijar hasta 3 ton/ha/año (Conant et ál. 2001).

d. La fertilización química y la utilización de excretas y purines como fuentes de fertilizantes orgánicos conllevan a acumular 0.30 ton/ha/año de C en herbáceas y leñosas (Conant et ál. 2001).

e. Los cambios en los usos de la tierra repercuten en el cambio en las reservas de C por ha y en la magnitud de los cambios inducidos. Al evitar cambios en los usos de la tierra, se previenen cambios en los presupuestos de carbono. Guo y Gifford (2002) encontraron que las reservas de C en el suelo declinan después de cambiar de pastos a plantaciones en 10% y de pastos a cultivos en 59%, pero aumentan al cambiar de cultivos a pastos en 19%. La conversión de áreas de pasturas en sistemas silvopastoriles favorece el secuestro de carbono en las fincas ganaderas.

f. El control de incendios permite que se acumulen hasta 0.7 ton/CO₂/ha al año.

g. El uso de leña para cocinar puede contribuir a la degradación de la vegetación y a la pérdida de las reservas de carbono almacenado, así como al incremento de emisiones de CO₂ producto de la combustión. El uso de tecnologías energéticas alternativas para sustituir el uso árboles o arbustos como combustible, y del gas
producido en biodigestores, hace que en los sistemas de producción ganaderos permanezca almacenado el carbono.

Las prácticas de gestión afectan las reservas de C, las tasas de secuestro de C y las emisiones de GEI. Al aumentar las tasas de secuestro de carbono, aumenta la fertilidad del suelo y, por lo tanto, la productividad de la vegetación y de la ganadería. Al mejorar la calidad del suelo, mejora su capacidad de retención de humedad, se reduce la erosión y se preserva la biodiversidad (Tennigkeit y Wilkes 2008). Todo lo anterior contribuye a que los productores ganaderos tengan medios de vida más sostenibles.

3.10. Balance de GEI

El balance de GEI puede entenderse como un proceso dinámico, en el cual, confluyen las salidas del sistema (GEI) y la capacidad de dicho sistema para absorber o neutralizar esas emisiones. El balance de GEI puede ser negativo, neutro o positivo, dependiendo de la cantidad de GEI emitidos y de la capacidad del sistema para absorberlos (Messa 2009).

La construcción de un balance de GEI se realiza a través de dos procesos: a) la cuantificación de todos los GEI emitidos por el sistema; y b) la cuantificación del carbono removido por los distintos usos de la tierra seleccionados para el balance.

Balance GEI = \[\sum Re \; CO_2e \; (j) - \sum Emisiones \; de \; GEI \; (i) \]

Donde:
- \(Re \; CO_2e \; (j) \) = remociones totales de CO\(_2\) e por uso del suelo
- Emisiones de GEI (i) = emisiones totales de CO\(_2\) e del sistema
- (i) = actividad o proceso que genera emisiones de GEI
- (j) = uso de la tierra presente en la finca que remueve emisiones
En Guanacaste, Costa Rica, una finca de 23,6 ha tenía una área productiva de 18,46 ha dedicadas al sistema de ganadería de doble propósito. La distribución de los usos de la tierra y la remoción de CO₂ se presentan en el Cuadro 27 y la Figura 9.

Cuadro 27. Remociones de CO₂ en una finca ganadera en Costa Rica

<table>
<thead>
<tr>
<th>Usos de la tierra</th>
<th>Área (ha)</th>
<th>Remociones en tCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosque secundario</td>
<td>5,65</td>
<td>80,59</td>
</tr>
<tr>
<td>Pastura mejorada sin árboles</td>
<td>8,97</td>
<td>23,02</td>
</tr>
<tr>
<td>Pastura mejorada con baja densidad de árboles</td>
<td>5,97</td>
<td>19,92</td>
</tr>
<tr>
<td>Pastura mejorada con alta densidad de árboles</td>
<td>3,10</td>
<td>15,23</td>
</tr>
<tr>
<td>Total</td>
<td>23,69</td>
<td>138,76</td>
</tr>
</tbody>
</table>

El hato de la finca se constituía de 16 vacas paridas, 12 vacas secas, 8 novillas > 2 años, 8 novillas de 1 a 2 años, 3 novillos de 1 a 2 años, 9 terneros y una carga animal de 3,3 UA/ha. Las emisiones totales de la finca equivalían a 101 t CO₂eq y la capacidad de remoción era de 138,7 t CO₂eq por año. El balance de la finca fue positivo en 37,76 t CO₂eq, principalmente por el aporte del bosque secundario presente en la finca.

Figura 9. Balance de emisiones en finca ganadera
En general, el capital natural de la finca, los bosques, los sitios en regeneración natural, las plantaciones maderables, las cercas vivas, las plantaciones maderables en líneas, las cortinas rompevientos y los árboles dispersos en potreros son usos de la tierra fundamentales como parte de la estrategia de mitigación de GEI, ya que ayudan a remover las emisiones de CO$_2$ y hacen que los balances de GEI en las fincas lecheras sean, en muchos casos, positivos.

3.11. Consideraciones

El CO$_2$ en los sistemas de producción agropecuarios, forestales y silvopastoriles se acumula en la biomasa viva sobre el suelo, en la biomasa subterránea, en la madera muerta, en la hojarasca y en el suelo. Para determinar la fijación de carbono en un depósito de carbono es necesario realizar inventarios de carbono en diferentes periodos de tiempo.

La conservación del bosque, la regeneración de la vegetación en áreas de pasturas, y el establecimiento de plantaciones forestales y agroforestales son tecnologías probadas que permiten una alta acumulación de carbono en fincas ganaderas.

Los sistemas silvopastoriles incluyen árboles dispersos en potreros, cercas vivas, cortinas rompevientos y plantaciones maderables en líneas. Además, ofrecen ingresos directos a los ganaderos y generan servicios ecosistémicos, como la fijación y el almacenamiento del carbono, la conservación de la biodiversidad, la disminución de la escorrentía y el mejoramiento de la fertilidad de los suelos.
Referencias
Amézquita, MC; Amézquita, E, Casasola, F; Ramírez, BL; Giraldo, H; Gómez, ME; Llanderal, T; Velásquez, J; Ibrahim, M. 2008. Carbon stocks and sequestration. In: Carbon sequestration in tropical grassland ecosystems. Wagenigen Academic Publisher. Eds Mannetje, L; Amézquita, MC; Buurman, P; Ibrahim, M. NL. p. 49-68.
Gerber, PJ; Steinfeld, H; Henderson, B; Mottet, A; Opio, C; Dijkman, J; Tempio, G. 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. FAO (Food and Agriculture Organization of the United Nations, IT). Rome, IT.
Ibrahim, M; Chacón, M; Cuartas, C; Naranjo, J; Ponce, G; Vega, P; Casasola, F; Rojas, J. 2007. Almacenamiento de carbono en el suelo y la biomasa aérea en sistemas de uso de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Agroforestería en las Américas.45:27-36.

López, M; Villanueva, C; Medina, JM; Tobar, D; Louman, B. Buenas prácticas para la adaptación al cambio climático en fincas ganaderas de América Central. Ed. Serie Técnica Manual Técnico CATIE no.120. Turrialba, CR.

Neil C; Melillo JM; Seudler PA; Cerrl CC. 1997. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecological Applications. 7:1216-1225.

Neil C; Melillo JM; Seudler PA; Cerrl CC. 1997. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecological Applications. 7:1216-1225.

Vine, E; Sathaye, J; Makundi, W. 1999. Guidelines for the monitoring, evaluation, reporting, verification, and certification of forestry projects for climate change mitigation. Ernest Orlando Lawrence Berkeley National Laboratory. 125 p.
Buenas prácticas para la mitigación al cambio climático de los sistemas de producción de leche en Costa Rica

Francisco Casasola Coto
Cristóbal Villanueva Najarro