Sistemas agroforestales con cacao en Costa Rica y Panamá

Eduardo Somarriba1 y John Beer2

Palabras claves: sistema agroforestal. \textit{Theobroma cacao}, Panamá, Costa Rica, investigaciones

RESUMEN

Se presenta una síntesis de lo que se conoce, lo que se cree que se conoce y lo que no se conoce después de más de 10 años de investigación agroforestal con cacao en la estación experimental del CATIE y en fincas de agricultores de Talamanca (Costa Rica) y Bocas del Toro (Panamá). Las tecnologías estudiadas incluyeron: 1) especies leguminosas o maderables como sombra para plantaciones nuevas de cacao; 2) especies leguminosas o maderables para la sustitución de sombra no-reguladora e improductiva en plantaciones “viejas” de cacao; 3) productividad, estabilidad y riesgo en sistemas diversificados con cacao, plátano y madera; 4) estudios de la biomasa y de los ciclos de agua y de nutrientes en caetales con sombra de maderables o leguminosas. El manejo diferencial por especie de sombra permite obtener similares rendimientos de cacao. No se detectaron diferencias en la infestación por patógenos bajo diferentes especies de sombra. Los resultados financieros favorecen el uso de maderables como sombra; se recomienda utilizar cultivos de ciclo corto en los primeros años de las plantaciones para mejorar el desempeño financiero. Las especies leguminosas mejoran sustancialmente la materia orgánica del suelo.

AGROFORESTY SYSTEMS WITH COCOA IN COSTA RICA AND PANAMA

ABSTRACT

A synthesis is presented of what we know, what we believe that we know, and what we still do not know about the development of cacao agroforestry systems in Costa Rica and Panama. The technologies which have been studied include: 1) legume or timber species as shade for newly established cacao plantations; 2) legume or timber species which can be substituted for ineffective or unproductive shade trees in “old” cacao plantations; 3) productivity, stability, and risk in diversified systems with cacao, plantain, and timber trees and 4) studies of the biomass production and hydrologic and nutrient cycles in cacao plantations with shade of timber or leguminous trees. The differential management of different shade species permits obtaining similar cacao yields. No differences in the incidence of pathogens was found under different shade species. The results of financial analyses favored the use of timber trees for shade; the use of species with a short cycle is recommended in the early years of plantations in order to improve financial performance. Leguminous shade species substantially improve soil organic matter levels.

ANTECEDENTES HISTÓRICOS DEL CACAO EN TALAMANCA (COSTA RICA) Y BOCAS DEL TORO (PANAMÁ)

1- El cacao fue utilizado por los indios americanos antes de que los españoles decidieran establecerse en la región de Talamanca, que en ese entonces incluía Bocas del Toro.
2- El cultivo se comercializó durante la época colonial. Sin embargo, los asentamientos agrícolas en la región nunca duraron mucho tiempo, debido a las guerras entre tribus, a las disputas de las autoridades coloniales y a las rebeliones de los indígenas contra la Corona española.
3- El principal desarrollo agrícola se inició en la década de 1860 con la producción comercial de plátano (\textit{Musa} spp).
4- Las plantaciones comerciales de cacao fueron establecidas para reemplazar a las plantaciones de plátano (\textit{Fusarium oxysporum}) y alcanzaron su punto máximo en la década de 1920.
5- La producción de plátano finalizó en 1934, cuando se trasladó a la costa del Pacífico en Costa Rica y Panamá. El cacao fue el cultivo más importante de la zona entre 1940 y 1970. La producción bananera se reanudó en 1978, con nuevas variedades resistentes al mal de Panamá. En las tierras bajas, las plantaciones de cacao fueron sustituidas por plátano; actualmente, la mayor parte del cacao se produce en las lomas del pie de monte.

1 Profesor Investigador Asociado, CATIE, Turrialba. \textit{E-mail}: esomarri@catie.ac.cr
2 Profesor Investigador, Jefe área de Cuenca y Sistemas Agroforestales, CATIE, Turrialba. \textit{E-mail}: jbeer@catie.ac.cr

SISTEMAS AGROFORESTALES CON CACAO EN TALAMANCA Y BOCAS DEL TORO

Se investigaron cinco sistemas agroforestales con cacao: 1) especies leguminosas (Crotalaria sepium, Erythrina poepigiana e Inga edulis) utilizadas como sombra mono-específica en plantaciones nuevas; 2) especies maderables (Cordia alliodora, Terminalia ivorensis y Tabebuia rosea) utilizadas como sombra mono-específica en plantaciones nuevas; 3) conversión de sombra en plantaciones de cacao existentes, utilizando las especies leguminosas mencionadas; 4) uso de especies maderables (ya mencionadas) para conversión de sombra en plantaciones de cacao existentes; 5) sistema cacao-plátano-maderable (C. alliodora) para producción intensiva y diversificada.

Se establecieron varios experimentos de cada tipo en fincas privadas, en colaboración con los agricultores; los resultados preliminares ya han sido publicados (ver Bibliografía). A continuación se resumen los principales resultados de la investigación agroforestal con cacao conducida en Turrialba, Talamanca y Bocas del Toro.

LO QUE SABEMOS

1- El manejo diferenciado (poda o ralea) de especies de sombra radicalmente diferentes (árboles de servicio o maderables) puede resultar en una producción similar de cacao.

2- En suelos férteles, con uso moderado de agroquímicos y con manejo diferenciado por especie, los análisis financieros favorecen el uso de maderables como sombra del cacao.

3- Las pérdidas del cultivo debidas a patógenos (principalmente los hongos M. roreri y Phytophthora palmivora) no se vieron afectadas por la selección y el manejo de las especies de sombra ni por los genotipos de cacao (un total de 12 cruces interconclones de la colección del CATIE). Las pérdidas ocasionadas por patógenos dependen de las prácticas culturales utilizadas en las fincas vecinas, que actúan como fuentes de inóculo. El nivel de pérdida oscila entre el 35 y el 75%, dependiendo del contexto local del experimento.

4- Las principales diferencias en la producción de cacao están determinadas por la selección del genotipo. A juicio a cero las pérdidas por patógenos (lo que da una idea del potencial productivo del genotipo), la producción potencial de cacao seco por genotipo varió entre 700-2400 kg/ha/año.

5- Se observó mayor variabilidad en los rendimientos del cacao a nivel de planta, lo que abre la posibilidad de selección y reproducción vegetativa de los genotipos más productivos. La mayoría de las plantas produjo menos de 1 kg/planta/año, lo que limita los rendimientos.

6- Los patógenos (especialmente M. roreri y Phytophthora palmivora) todavía son un problema serio en la producción de cacao en Talamanca y Bocas del Toro. La escoba de bruja (Claviceps perniciosa) aún no ha aparecido en la zona, pero es una amenaza permanente.

7- En las plantaciones nuevas es crucial el control de las malas. La selección y el manejo adecuado de las especies de sombra pueden reducir este problema en forma drástica.

8- La introducción de especies leguminosas o maderables en las plantaciones de cacao es una alternativa simple y barata para reemplazar la sombra inproductiva y difícil de manejar.

9- El crecimiento de maderables es excelente, tanto en las plantaciones nuevas como en las viejas. Los maderables se beneficiarán de la fertilidad de los suelos donde se siembra cacao y de la disponibilidad de agua durante todo el año en la zona. El manejo del cacao (control de malezas, fertilización, poda de la corona, etc.) y las bajas densidades de los árboles de sombra (70-280 árboles/ha) favorecen el desarrollo maderable.

10- Los buenos crecimientos permiten aprovechar la made- ra en turnos cortos, lo que facilita la incorporación de pequeños y medianos agricultores en los programas de reforestación. El desempeño financiero de la mayoría de los sistemas evaluados es satisfactorio, especialmente cuando la mano de obra es barata. La siembra de plá- tano, árboles maderables y el uso de cultivos de ciclo corto como sombra temporal (en plantaciones nuevas) mejora el desempeño financiero de las plantaciones.

11- El material orgánico de los suelos aumenta bajo cacao con sombra, aún en los suelos con un alto contenido ini-
cial de materia orgánica. Las leguminosas de sombra, podadas regularmente, tienen un efecto superior al de los maderables no podados
12- Si la composición genética se mantiene constante, la producción de cañam está determinada por los niveles de iluminación en la plantación. Sólo hay respuesta a las mejoras en la fertilidad del suelo cuando los niveles de sombra son bajos (por ej., por podas frecuentes)
13- El crecimiento de las raíces finas del cacao se produce al inicio de la estación lluviosa, mientras que para muchos árboles tropicales, incluyendo C. alliodora y E. poepigiana, ocurre al final
14- El uso de árboles leguminosos como sombra, sobre todo cuando se podan regularmente, acelera el reciclaje de nutrientes
15- La producción de hojarasca y la productividad primaria neta de las plantaciones de cacao con sombra son similares a las de los bosques naturales tropicales y muy superiores a las de la mayoría de los sistemas agrícolas tropicales
16- En un terreno limpio, utilizado antes para caña de azúcar (Saccharum officinarum), el escurrimento de carbono en sistemas agroforestales con cacao alcanza las 5 toneladas/ha año a los 10 años de edad
17- Los cacaoales con sombra leguminosa o maderable pueden ser sostenibles con poca o ningún insumo externo (indicadores: productividad primaria neta, material orgánico del suelo, producción comercial)

LO QUE CREEMOS QUE SABEMOS

1- Se dispone de suficiente conocimiento como para diseñar sistemas agroforestales con cacao sencillos y viables
2- Desde el punto de vista económico, los sistemas diversificados se desarrollan mejor que los monocultivos de cacao. No obstante, los cultivos asociados son sujetos a ciertos factores locales, como mercados, accesibilidad, manejo post-cosecha, etc
3- Maderable y leguminosa se pueden combinar para asegurar una rápida cobertura del suelo, reducir la infestación de malezas, reducir costos de manejo e incrementar el desempeño económico
4- Es posible mejorar la producción de cacao introduciendo genotipos resistentes a los patógenos y altamente productivos. Los materiales clonales pueden ser más promisorios que las plantas sexuales
5- Las plantaciones de cacao son adecuadas para los pequeños agricultores en áreas remotas y en las zonas de amortiguamiento de áreas protegidas. El grano seco puede almacenarse sin que se pudra; el valor por unidad de peso es alto, lo que abarata el transporte hacia mercados remotos; la estructura forestal aumenta la biodiversidad y proporciona una mejor transición entre las áreas protegidas y las áreas agrícolas circundantes
6- Los genotipos probados son apropiados para bajos niveles de sombra (altos rendimientos). Este potencial se logra cuando la fertilidad natural del suelo es alta (como en nuestros sitios de estudio) y cuando se agregan fertilizantes

7- Un incremento en la entrada de materia orgánica al suelo mejora la disponibilidad de nutrientes para árboles y cacao
8- La presencia de árboles de sombra reduce la lixiviación de nutrientes
9- Mediante la utilización de varias especies de sombra se puede manipular la descomposición de la hojarasca y el ciclaje de nutrientes
10- Se puede manejar un dosel de sombra diverso sin reducir el rendimiento de cacao

LO QUE NO SABEMOS

1- El desempeño de clones de cacao de alto rendimiento en escenarios de pequeñas fincas, con bajos insumos químicos y altos niveles de sombra
2- Ventajas comparativas de utilizar la fijación de N y/o muelch producido por leguminosas de sombra en suecos de baja fertilidad y sin fertilización química
3- Si se puede diseñar dosel de sombra más diversos agregando especies frutales que satisfagan los siguientes criterios: a) buenas características de sombra; b) valiosos para el mercado, consumo doméstico o la biodiversidad; c) producen frutos secos o frutos no perecederos (ej. nueces) que puedan ser almacenados y transportados en forma económica a mercados distantes
4- El daño al cacao (y efectos sobre los rendimientos de ca-acao) durante la tala de árboles y la extracción maderera
5- Los criterios utilizados por los agricultores para el diseño y manejo del dosel de sombra
6- Forma de la interacción: rendimiento-sombra-fertilidad-costos
7- Cómo manejar árboles de sombra dentro de un programa integrado de manejo de plagas/enfermedades para reducir las aplicaciones de plaguicidas
8- El efecto del incremento del material orgánico del sue-lo sobre la biodiversidad (p. e. flora y fauna del suelo)
9- Si es preferible tener una rápida o lenta descomposi-ción de hojarasca (p. e. ¿es más importante el ciclaje rápido de nutrientes que la protección de la superficie del suelo?)
10. Contrastes económicos (incluyendo la valoración de externalidades) entre la producción de cacao bajo sombra mixta versus sombra mono-específica.

11. Regímenes de manejo de árboles frutales que permitan incrementar los rendimientos de fruta y de cacao.

12. ¿Qué tan importantes son las plantaciones de cacao en zonas de amortiguamiento como un medio para extender las áreas protegidas y la biodiversidad?

13. Efectos de los niveles de sombra en la calidad del cacao (grano).

PRODUCCIÓN SOSTENIBLE EN CACAUOTES

1. Minimizar la degradación ambiental.
 La erosión del suelo en cacauotes en pendientes puede ser importante. Pero las plantaciones de cacao con sombra proporcionan una buena cobertura del suelo después de la fase de establecimiento. Los plaguicidas son de uso limitado (los contaminantes tóxicos no son un aspecto crítico en las áreas productoras de cacao), los herbicidas son utilizados en forma regular; los fertilizantes inorgánicos son raramente utilizados en áreas remotas. El cultivo intensivo de cacao requiere de 0,5 a 1,5 toneladas/ha/año de fórmulas comerciales de fertilizante (en los experimentos en Talamanca y Bocas del Toro fue de 0,5 toneladas/ha/año).

La degradación ambiental puede minimizarse a través de: 1) manejo de la cobertura del suelo (selección de especies de sombra, cultivos asociados, densidades de siembra, arreglos de siembra, raleos), minimizando el uso de herbicidas; 2) evitar sistemas de cultivo intensivos para reducir el uso de fertilizantes inorgánicos y 3) selección de árboles de sombra que produzcan grandes cantidades de material orgánico (o con podas regulares, forzar al árbol a hacerlo).

2. Maximizar la diversidad biológica.
 Los rendimientos moderados de cacao (1 tonelada/ha/año) deben ser la meta. Los niveles de sombra en plantaciones adultas deben promediar el 30% con variaciones estacionales de entre 20-50%. Los dosel de árboles pueden incluir de 100-150 árboles/ha en plantaciones adultas. Las especies arbóreas deben ser seleccionadas de acuerdo a las características de sombra, productividad y servicios ambientales requeridos (p.e sitios de descanso y antilación para aves, comida para mamíferos, producción de miel, etc.). La diversificación con especies de valor comercial debe reducir la necesidad de incrementar los rendimientos de cacao utilizando un manejo más intensivo (p.e agroquímicos). La utilización de cultivos de ciclo corto como sombra temporal en las fases de establecimiento de las plantaciones de cacao aumenta la diversidad biológica. Se prevé una estrecha base genética para el cacao debido a que se recomienda utilizar una mezcla de 7-10 clones de alto rendimiento y resistencia.

3. Obtener rendimientos a largo plazo.
 El ajuste de los dosel de sombra (nivel de sombra, composición botánica, regímenes de poda y raleo) con las características del sitio (niveles de fertilidad, condiciones socioeconómicas del agricultor) y con los genotipos de cacao apropiados, pueden resultar en rendimientos aceptables a largo plazo (cacao, madera, frutas, servicios ambientales, etc.).

4. Mejoras en el nivel de vida de los pequeños agricultores.
 Un buen diseño agroforestal puede resultar en altos rendimientos y buena viabilidad ecológica. Precios de cacao más altos y menos variables motivan a los agricultores.

RECOMENDACIONES

Implementar nuevas investigaciones en fincas sobre aspectos ecológicos y financieros de prototipos agroforestales basados en cacao, en áreas remotas y zonas de amortiguamiento de áreas protegidas. Ya hay un primer borrador de prototipo listo para discusión y mejoras. CATIE: se debe buscar el financiamiento para desarrollar estos estudios.

 Diseñar e implementar experimentos en fincas bajo control experimental sobre la interacción sombra-fertilidad-ren- dimiento en los sistemas agroforestales basados en cacao.

REFERENCIAS

BEER, J. 1987 Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agroforestry Systems 5:3-13

BEER, J. 1988. Litter production and nutrient cycling in coffee (Coffee arabica) and cacao (Theobroma cacao) plantations with shade trees. Agroforestry Systems 7:103-114

El desarrollo de la investigación agroforestal ha permitido el diseño de sistemas sostenibles en América Central (Foto F. Solano)