ANALISIS ECONOMICO DEL MANEJO DEL PICUDO DE CHILE
(Anthonomus eugeni Cano) EN ZACAPA, GUATEMALA

Gustavo Calvo Domingo*
Ana Beatriz Pacheco**
James B. French***
Edgar Alvarado****

INTRODUCCION

En el municipio de Cabañas, departamento de Zacapa, Guatemala, se cultiva el chile dulce (Capsicum annuum L.) como una de las principales actividades agrícolas de la zona, la cual juega un papel muy importante en la economía de la población (Pacheco, 1987). Uno de los principales problemas detectados en el área, es el daño de la plaga picudo (Anthonomus eugeni, Cano) la cual causa grandes pérdidas en el rendimiento del cultivo (Cordon, 1985). El agricultor, para controlar esta plaga, aplica plaguicidas en forma calendarizada lo cual significa un elevado costo de producción. En trabajos desarrollados en la región, se ha determinado que los agricultores realizan entre 16 y 33 aplicaciones por ciclo contra plagas insectiles, de las cuales la principal es el picudo (Trabanino, Medina Sánchez y Cruz Lam, 1987).

La aplicación de plaguicidas en forma calendarizada no considera el nivel de infestación de la plaga ni el nivel de pérdida correspondiente. Una técnica fundamental en los programas de manejo integrado de plagas es el umbral de decisión. La idea básica del umbral es monitorear la plaga, y aplicar el plaguicida cuando la infestación es tal que se justifica el costo del control (Zavaleta, 1983; Hruska y Rosset, 1987; Reichelderfer et al, 1985).

* Economista Agrícola Asistente, CATIE, Proyecto MIP, 7170 Turrialba, Costa Rica.
** Ingeniero Agrónomo, realizando su trabajo de tesis, Universidad de San Carlos, Guatemala.
*** Economista Agrícola Principal, CATIE, Proyecto MIP, 7170 Turrialba, Costa Rica.
****Entomólogo, CATIE, Proyecto MIP, Apartado 76-A, Guatemala.
Los umbrales desarrollados han probado ser económicamente superiores a las prácticas del agricultor para diferentes cultivos por ejemplo: para algodón (Lacewell y Taylor, 1980); para manzana (Cochran et al., 1983); y para tomate (Antle y Park, 1986; Zea Morales et al., 1986). También se han reportado aumentos en los ingresos netos al comparar la implementación de umbrales de decisión para el cultivo de chile dulce (Capsicum annuum L.) con las aplicaciones calendarizadas en Honduras (Araujo et al. 1988; Andrews et al., 1986).

El presente informe se fundamentó en los resultados de la investigación realizada como un trabajo de tesis (Pacheco, 1987) de la Universidad de San Carlos, Guatemala. Dicha tesis formó parte del desarrollo de un plan de manejo integrado de plagas que realiza el Proyecto MIP/CATIE y el ICTA-Guatemala.

El objetivo del trabajo es evaluar la factibilidad de utilizar un criterio de decisión, control supervisado por medio de un umbral de acción, para planificar las aplicaciones de plaguicidas bajo las condiciones físicas y socioeconómicas de Cabañas, Zacapa, Guatemala. Se comparó el control supervisado con la práctica comúnmente realizada en la zona de aplicaciones calendarizadas cada tres, cinco y ocho días. Además, para complacer la demanda de los productores, se evaluaron cuatro combinaciones de insecticidas, representadas en los siguientes grupos de ingrediente activo: órganofosforados, piretroïdes, y carbamatos.

ANTecedentes

El ensayo estuvo localizado en la cabecera municipal de Cabañas, del departamento de Zacapa, a 35 km de la cabecera departamental, con una altura de 247.27 msnm. El territorio es de tipo monte bajo y matorral; con un clima sumamente cálido y su estación fría no está bien definida, con ambiente semi-seco e invierno seco. Los rangos de temperatura van de 20°C a 38°C, con temperatura media de 27°C. La precipitación es escasa (645.5 mm/año) por lo cual la
parte plana de la región dispone de sistemas de riego por bombeo y gravedad.

El diseño fue de bloques completos al azar con arreglo de parcelas divididas, y cuatro repeticiones. El diseño incluyó cuatro parcelas grandes en las cuales se aplicaron los productos químicos: Malation/metil-paration, Cyflutrin, Azinfos-metil y Malation-Propoxur. En las cuatro parcelas pequeñas, se llevaron a cabo las opciones de aplicación de acuerdo con los criterios de decisión, cada tres, cinco y ocho días y el control supervisado. Este control consistió en realizar la aplicación cuando la población muestreada fuera de dos o más picudos en 40 terminales.

En relación con el control supervisado, se muestrearón las parcelas cada cuatro días. El primero se realizó 13 días después del trasplante. Se muestrearón los dos surcos centrales de la parcela útil, abarcando un total de cuarenta terminales, veinte por surco. Las lecturas se realizaron entre las 7:30 y las 9:30 de la mañana.

El tamaño de parcela útil fue de 40 m², con un total de 88 plantas por parcela. La cosecha se inició 63 días después del trasplante, realizando 9 cortes. De la parcela útil, se tomaron los datos del rendimiento en kilogramos de fruto (cosecha), del número de frutos caídos con daño y del número de frutos promedio.

Los rendimientos por hectárea (Anexo 1), presentaron diferencias entre tratamientos estadísticamente significativas. Los mejores tratamientos fueron Cyflutrin y Malation/metil-paration. También tuvo significación estadística la interacción entre los insecticidas usados y los criterios de decisión. El Cuadro 1 presenta los resultados de la prueba Student-Newman-Keuls' (S-N-K test) de la interacción entre el producto químico y el criterio de decisión, en donde se observa que el mejor tratamiento de control según el máximo rendimiento fue el producto Cyflutrin aplicado cada tres días. Sin embargo, no se pudo establecer una diferencia estadísticamente significativa entre este y los siguientes cuatro trata-
mientos, incluyendo la aplicación de algún insecticida cada cinco y ocho días y un control supervisado (Pacheco, 1987).

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>FRECUENCIA</th>
<th>Total (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyflutrin</td>
<td>3 días</td>
<td>4981.3 A</td>
</tr>
<tr>
<td>Malation/metil-paration</td>
<td>5 días</td>
<td>3903.1 A B C</td>
</tr>
<tr>
<td>Malation+propoxur</td>
<td>8 días</td>
<td>3623.1 A B C</td>
</tr>
<tr>
<td>Azinfos-metil</td>
<td>C.S.</td>
<td>3605.6 A B C</td>
</tr>
<tr>
<td>Cyflutrin</td>
<td>8 días</td>
<td>3580.6 A B C</td>
</tr>
<tr>
<td>Malation/Metil-paration</td>
<td>C.S.</td>
<td>3521.3 B C</td>
</tr>
<tr>
<td>Cyflutrin</td>
<td>5 días</td>
<td>3249.4 B C</td>
</tr>
<tr>
<td>Malation+propoxur</td>
<td>C.S.</td>
<td>3138.8 B C</td>
</tr>
<tr>
<td>Malation+propoxur</td>
<td>3 días</td>
<td>3130.6 B C</td>
</tr>
<tr>
<td>Malation+propoxur</td>
<td>5 días</td>
<td>3048.8 B C</td>
</tr>
<tr>
<td>Malation/metil-paration</td>
<td>3 días</td>
<td>3032.5 B C</td>
</tr>
<tr>
<td>Malation/metil-paration</td>
<td>8 días</td>
<td>2983.8 B C</td>
</tr>
<tr>
<td>Azinfos-metil</td>
<td>8 días</td>
<td>2961.9 B C</td>
</tr>
<tr>
<td>Cyflutrin</td>
<td>C.S.</td>
<td>2668.8 C</td>
</tr>
<tr>
<td>Azinfos-metil</td>
<td>5 días</td>
<td>2631.3 C</td>
</tr>
<tr>
<td>Azinfos-metil</td>
<td>3 días</td>
<td>2197.5 C</td>
</tr>
</tbody>
</table>

Fuente: Pacheco, 1987

En términos de la cantidad de insecticida utilizado con la técnica de control, se realizaron menos aplicaciones con el control supervisado, 4.5 en promedio comparado con 7, 11 y 17 aplicaciones para los tratamientos de aplicaciones calendarizadas cada ocho, cinco y tres días respectivamente.
ANÁLISIS ECONÓMICO

Se realizó un análisis económico para evaluar los diferentes planes del manejo del picudo y para determinar cuál de los plaguicidas sería superior. La metodología utilizada fue la de presupuestos parciales y análisis marginal de los beneficios netos. Este método de análisis es comúnmente utilizado para evaluar el potencial de las nuevas tecnologías para el productor (Perrin et al., 1976) incluyendo técnicas y programas de manejo integrado de plagas (Lacewell y Taylor, 1980; Reichelderfer et al., 1985; y French, 1989).

Durante la realización del ensayo se tomaron los datos sobre las cantidades utilizadas de los factores variantes entre tratamientos; los plaguicidas, la mano de obra utilizada en realizar los muestreos de plagas y el equipo utilizado. Se determinó el costo de los plaguicidas a precios de compra durante la realización del experimento.

Para valorizar la mano de obra se utilizó el valor de su contratación para realizar las fumigaciones en Zacapa a razón de 4.5 quetzales por jornal. Se usó este costo para valorizar también la labor de muestreo. Debe destacarse que, no se puede asegurar si éste representa su verdadero costo, puesto que es una actividad que no se realiza en la zona en forma regular. Éste es un trabajo que no requiere mucho esfuerzo físico, y que por lo tanto su costo podría estimarse más bajo. Por otro lado, es un trabajo especializado que requiere una habilidad particular (conteo), lo que podría aumentar el valor del jornal. El valor de la tarea de conteo, por esta razón, es un factor sobre el cual se debería realizar un análisis de sensibilidad.

El valor del equipo utilizado se basó en el costo de un equipo de fumigación, depreciado sobre la vida útil del mismo según su uso (número de aplicaciones). Este costo se agrega al costo de la mano de obra utilizada en la aplicación, para integrar un costo único de la aplicación.
El ingreso total fue calculado del promedio de los rendimientos obtenidos en el experimento, multiplicado por el precio esperado en la zona, un quetzal por kg.

Análisis por componentes. En el Cuadro 2, se han resumido los beneficios netos y los costos variables según el criterio de aplicación y según el insecticida probado en la forma de promedios, lo que permite evaluar el comportamiento general de cada factor. Así se puede ver más claramente el impacto general de los diferentes plaguicidas y sus técnicas de manejo.

Cuadro 2. Promedio de beneficios netos y costos variables por criterios de decisión y por tipo de insecticida aplicado.

<table>
<thead>
<tr>
<th></th>
<th>Aspersiones calendarizadas</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tres días</td>
<td>Cinco días</td>
</tr>
<tr>
<td>Beneficios netos</td>
<td>1612.58</td>
<td>2141.59</td>
</tr>
<tr>
<td>Costos variables</td>
<td>1647.02</td>
<td>1065.72</td>
</tr>
</tbody>
</table>

Insecticidas

<table>
<thead>
<tr>
<th></th>
<th>Azinfos-metil Cyflutrin</th>
<th>Proponur Methyl-parathion</th>
<th>Malation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beneficios netos</td>
<td>1173.92</td>
<td>2419.64</td>
<td>2552.01*</td>
</tr>
<tr>
<td>Costos variables</td>
<td>1075.26</td>
<td>830.47</td>
<td>808.12</td>
</tr>
</tbody>
</table>

Tratamientos no dominados.

El control supervisado como criterio de decisión domina las aplicaciones calendarizadas por tener un mayor promedio de beneficios netos y un menor costo variable. También se puede deducir de estos datos que al aplicar menos plaguicidas, los beneficios netos aumentan y los costos variables disminuyen (Fig.1). Situación similar señala Díaz Arrue (1987), en un trabajo realizado con chile
jalapeño en la zona de Chiquimula, en donde se refleja que las prácticas de control supervisado, presentan mejores índices económicos que el testigo absoluto y aplicaciones calendarizadas cada 6 días.

En el caso de los plaguicidas, el malation/methyl-paration, sobrepasa a los otros insecticidas con un mayor beneficio y menor costo (Fig 2.). Este es seguido por el malation+propoxur.
Análisis por tratamientos. Se presentan los beneficios netos y los costos variables que resultaron del presupuesto parcial en el Cuadro 3, mientras que se registra el presupuesto parcial en el Anexo 2. En el Cuadro 3, los tratamientos se han ordenado de mayor a menor beneficio neto con sus correspondientes costos variables, para permitir el análisis de dominancia. La técnica que resultó de mayor beneficio neto es la del control supervisado, aplicando Azinfos-metil. Este fue seguido por dos fumigaciones calendarizadas. Sin embargo, al realizar el análisis de dominancia, se eliminan todos los tratamientos basados en aplicaciones calendarizadas (Cuadro 3). El control supervisado según el umbral de acción es superior a las aplicaciones calendarizadas por su menor costo.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>BENEFICIO</th>
<th>COSTOS VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azinfos-metil CS.</td>
<td>3112.08</td>
<td>493.64*</td>
</tr>
<tr>
<td>Malation+propoxur 8d</td>
<td>3105.09</td>
<td>578.32</td>
</tr>
<tr>
<td>Malation/metil-paration 5d</td>
<td>3041.30</td>
<td>862.07</td>
</tr>
<tr>
<td>Malation/metil-paration C.S.</td>
<td>3031.70</td>
<td>489.54*</td>
</tr>
<tr>
<td>Cyflutrin 8d</td>
<td>2756.90</td>
<td>824.35</td>
</tr>
<tr>
<td>Malation+propoxur C.S.</td>
<td>2707.70</td>
<td>430.28*</td>
</tr>
<tr>
<td>Cyflutrin 3d</td>
<td>2679.30</td>
<td>2001.99</td>
</tr>
<tr>
<td>Malation/metil-paration 8d</td>
<td>2438.05</td>
<td>548.59</td>
</tr>
<tr>
<td>Azinfos-metil 8 d</td>
<td>2201.10</td>
<td>761.48</td>
</tr>
<tr>
<td>Malation+propoxur 5 d</td>
<td>2140.10</td>
<td>908.79</td>
</tr>
<tr>
<td>Cyflutrin C.S.</td>
<td>2140.35</td>
<td>559.00</td>
</tr>
<tr>
<td>Cyflutrin 5d</td>
<td>1954.30</td>
<td>1295.40</td>
</tr>
<tr>
<td>Malation+propoxur 3d</td>
<td>1725.70</td>
<td>1404.50</td>
</tr>
<tr>
<td>Malation/metil-paration 3d</td>
<td>1697.50</td>
<td>1332.29</td>
</tr>
<tr>
<td>Azinfos-metil 5d</td>
<td>1434.68</td>
<td>1196.62</td>
</tr>
<tr>
<td>Azinfos-metil 3d</td>
<td>347.80</td>
<td>1849.33</td>
</tr>
</tbody>
</table>

*Treatment not dominated.
Trabajos realizados por técnicos de prueba de tecnología del ICTA, han encontrado que el uso del control supervisado después de la floración resulta ser económicamente superior a las aplicaciones calendarizadas como es la práctica común del agricultor, (Trabanino, Medina y Crúz, 1988). De los plaguicidas utilizados, el piretroide, Cyflutrin, fue el único excluido de la lista de los no dominados. A los tratamientos no dominados se les aplicó un análisis de retorno marginal utilizando los incrementos o cambios en los beneficios netos y costos variables.

El Cuadro 4, muestra los resultados del análisis marginal. Todos los tratamientos señalan altas tasas de retorno. Se debe decidir el monto a invertir como capital operativo en función del aumento esperado en el beneficio neto. El incremento en los gastos se justifica desde el punto de vista financiero cuando la TRM es suficientemente alta para cubrir el costo de la inversión del dinero gastado, medido por la tasa de interés apropiada y un factor de riesgo asociado con la consideración de una tecnología nueva.

<table>
<thead>
<tr>
<th>S. neto</th>
<th>Tratamiento</th>
<th>Costos Variables</th>
<th>Cambio en Beneficio neto</th>
<th>Cambio en costos variables</th>
<th>TRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3112.08</td>
<td>Azinfos C.S. Control supervisado</td>
<td>493.63</td>
<td>80.38</td>
<td>4.1</td>
<td>1960.487</td>
</tr>
<tr>
<td>3031.7</td>
<td>Malation C.S. Control supervisado</td>
<td>489.53</td>
<td>324</td>
<td>59.25</td>
<td>546.8354</td>
</tr>
<tr>
<td>2707.7</td>
<td>Malation +propoxur C.S. Control supervisado</td>
<td>430.28</td>
<td>2707.7</td>
<td>430.28</td>
<td>629.2879</td>
</tr>
</tbody>
</table>

La tasa de retorno marginal (TRM) indica el retorno marginal proveniente del incremento en los costos relacionados con pasar, del tratamiento que tiene menor beneficio neto, al siguiente con
mayores beneficios netos. Se justifica el primer gasto adicional (uso de malation+propoxur con el criterio de control supervisado) pues se obtiene una TRM de 629%. El segundo gasto que corresponde a utilizar el tratamiento Malation con el criterio de control supervisado, también se justifica pues se obtiene una TRM de 546%. El tercer gasto adicional, correspondiente al uso de Azinfos-metil con el criterio de control supervisado, también se justifica pues se obtiene una TRM 1960%. Entonces el mejor tratamiento en este caso sería el tratamiento de Azinfos-metil con control supervisado, porque se justifica el gasto adicional necesario para alcanzar un mayor nivel de beneficios netos.

Análisis de Retorno Mínimo. Un aspecto importante a examinar antes de formular una recomendación, es el riesgo o confiabilidad de los tratamientos bajo consideración debido a la variación de los rendimientos obtenidos. Se deben evaluar económicamente los tratamientos bajo condiciones que podrían resultar en rendimientos más bajos. Una manera de realizar esta evaluación es mediante la utilización del promedio de las dos repeticiones con rendimientos más bajos por cada tratamiento. Esto supone que las replicaciones con rendimientos bajos simulan lo que podría suceder bajo circunstancias extremas. En el Anexo 3, se presentan los presupuestos parciales de esta situación: en el Cuadro 5 el análisis de dominancia y en el Cuadro 6, el análisis marginal de beneficios netos. Como se observa se mantienen los resultados de la situación anterior. Los tres controles supervisados dominan los demás tratamientos y el tratamiento Azinfos-metil C.S. con el criterio de control supervisado es el mejor.

Análisis de sensibilidad. Otro de los aspectos a considerar en un análisis económico, es la sensibilidad de los retornos económicos con respecto a una variación en los precios del producto final o a un cambio de precio en el insumo estudiado. En este caso se analizará una disminución del precio de venta del producto en un 50% y un aumento de 10% del precio del insecticida más rentable bajo el criterio de control supervisado, Azinfos-metil. No se ana-
CUADRO 5. Análisis de dominancia experimento control de A. eugenii en chile. Rendimiento promedio dos repeticiones más bajas.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>BENEFICIO NETO</th>
<th>COSTOS VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azinfos-metil C.S.</td>
<td>2758.86</td>
<td>493.64*</td>
</tr>
<tr>
<td>Malation/metil-paration 5d</td>
<td>2620.43</td>
<td>862.07</td>
</tr>
<tr>
<td>Malation/metil-paration C.S.</td>
<td>2480.46</td>
<td>489.54*</td>
</tr>
<tr>
<td>Cyflutrin 3d</td>
<td>2261.76</td>
<td>2001.99</td>
</tr>
<tr>
<td>Azinfos-metil 8d</td>
<td>1952.26</td>
<td>761.48</td>
</tr>
<tr>
<td>Malation+propoxur 8d</td>
<td>1884.18</td>
<td>578.32</td>
</tr>
<tr>
<td>Malation+propoxur C.S.</td>
<td>1757.66</td>
<td>548.59</td>
</tr>
<tr>
<td>Malation+propoxur 5d</td>
<td>1642.45</td>
<td>908.79</td>
</tr>
<tr>
<td>Cyflutrin C.S.</td>
<td>1553.50</td>
<td>559.00</td>
</tr>
<tr>
<td>Cyflutrin 8d</td>
<td>1308.15</td>
<td>824.35</td>
</tr>
<tr>
<td>Cyflutrin 5ad</td>
<td>1014.59</td>
<td>1295.40</td>
</tr>
<tr>
<td>Azinfos-metil 5d</td>
<td>954.62</td>
<td>1196.62</td>
</tr>
<tr>
<td>Malation/metil-paration 3d</td>
<td>915.21</td>
<td>1332.29</td>
</tr>
<tr>
<td>Malation+propoxur 3d</td>
<td>843.00</td>
<td>1404.50</td>
</tr>
<tr>
<td>Azinfos-metil 3d</td>
<td>-609.32</td>
<td>1849.33</td>
</tr>
</tbody>
</table>

*Tatamientos no dominados.

lizó el valor de la labor de monitoreo porque éste corresponde solo a un pequeño componente del costo variable total y no afectaría los resultados.

En el Anexo 4 se presentan los presupuestos parciales de los tratamientos con una disminución del 50% del precio de venta del chile. En el Cuadro 7, se presenta el análisis de dominancia y en el Cuadro 8, el análisis marginal de beneficios netos. Los resultados muestran que a pesar de la reducción del precio del producto, y por ende del beneficio neto, los gastos adicionales en plaguicidas son lo suficientemente rentables como para ser justificadas (TRM: 264%, 223% y 930%). Los tres tratamientos de control supervisado se mantienen como dominantes y la técnica recomendada es
CUADRO 6. Análisis marginal de beneficios netos. Promedio 2 repeticiones con menor rendimiento.

<table>
<thead>
<tr>
<th>BENEFICIO NETO</th>
<th>TRATAMIENTO</th>
<th>COSTOS VARIABLES</th>
<th>CAMBIO BENEFICIO NETO</th>
<th>CAMBIO EN COSTOS VARIABLES</th>
<th>TRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2758.86</td>
<td>Azinfos-metil Control Supervisado</td>
<td>93.64</td>
<td>278.4</td>
<td>4.11</td>
<td>6773.72</td>
</tr>
<tr>
<td>2480.46</td>
<td>Malation Control Supervisado</td>
<td>489.53</td>
<td>781.99</td>
<td>59.25</td>
<td>1286.08</td>
</tr>
<tr>
<td>1718.47</td>
<td>Malation -propoxur C.S. Control Supervisado</td>
<td>430.28</td>
<td>1718.47</td>
<td>489.28</td>
<td>399.38</td>
</tr>
</tbody>
</table>

la misma, el tratamiento Azinfos-metil con el criterio de control supervisado.

El Anexo 5 muestra los presupuestos parciales de los tratamientos con un aumento en el precio del Azinfos-metil del 10%. En el Cuadro 9 se presenta el análisis de dominancia y en el Cuadro 10 el análisis marginal de beneficios netos. Se puede observar un cambio en los resultados, con el tratamiento Malation-propoxur cada 8 días, pues se obtiene una tasa de retorno del 78%. De acuerdo con la tasa de interés vigente para el sector agropecuario, entre 14% y 16% y agregándole una prima de riesgo de 30%, el mejor tratamiento sería el uso de la mezcla de insecticidas Malation y Propoxur aplicados cada 8 días. Sin embargo, los otros tres tratamientos con el criterio de control supervisado todavía se incluyen en el grupo de tratamientos dominantes.

CONCLUSIONES

- El grupo dominante lo forman tres de los tratamientos que utilizan el control supervisado. Esto sugiere que cuando se basan las asepersiones en un criterio de decisión, hay una eficiencia económica en el uso de los plaguicidas, lo cual permite racionalizar los plaguicidas según un criterio económico.
CUADRO 7. Análisis de dominancia experimento control de A. eugeni en chile. Rendimiento promedio cuatro repeticiones, precio mínimo de chile (0.5 Q/kg).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>BENEFICIO NETO</th>
<th>COSTOS VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azinfos-metil C.S.</td>
<td>1809.22</td>
<td>498.64*</td>
</tr>
<tr>
<td>Malation/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metil-paration C.S.</td>
<td>1271.09</td>
<td>489.54*</td>
</tr>
<tr>
<td>Malation+propoxur 8d</td>
<td>1263.38</td>
<td>573.32</td>
</tr>
<tr>
<td>Malation+propoxur C.S.</td>
<td>1138.71</td>
<td>430.28*</td>
</tr>
<tr>
<td>Malation/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metil-paration 5d</td>
<td>1089.61</td>
<td>862.07</td>
</tr>
<tr>
<td>Cyflutrin 8d</td>
<td>966.26</td>
<td>824.35</td>
</tr>
<tr>
<td>Malation/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metil-paration 8d</td>
<td>943.25</td>
<td>548.59</td>
</tr>
<tr>
<td>Cyflutrin C.S.</td>
<td>772.67</td>
<td>559.00</td>
</tr>
<tr>
<td>Azinfos-metil 8 d</td>
<td>719.80</td>
<td>761.48</td>
</tr>
<tr>
<td>Malation+propoxur 5 d</td>
<td>615.64</td>
<td>908.79</td>
</tr>
<tr>
<td>Cyflutrin 5d</td>
<td>329.44</td>
<td>1295.40</td>
</tr>
<tr>
<td>Malation/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metil-paration 3 d</td>
<td>182.61</td>
<td>1332.29</td>
</tr>
<tr>
<td>Malation-propoxur 3d</td>
<td>160.59</td>
<td>1404.50</td>
</tr>
<tr>
<td>Azinfos-metil 5 d</td>
<td>119.01</td>
<td>1196.62</td>
</tr>
<tr>
<td>Azinfos-metil 3d</td>
<td>-750.76</td>
<td>1849.33</td>
</tr>
</tbody>
</table>

*Tratamientos no dominados.

- El orden de los tratamientos según criterio económico, no coincide con el orden según criterio agronómico o de rendimiento. Sin embargo, el mejor tratamiento económico, Azinfos-metil C.S., no muestra diferencia de rendimiento, estadísticamente significativa, con respecto al mejor tratamiento agronómico, Cyflutrin cada tres días.

- Otro aspecto importante a considerar es la posibilidad de utilizar también uno de los otros dos tratamientos no dominados (Malation C.S. y malation+propoxur C.S.) de acuerdo con las limi-

<table>
<thead>
<tr>
<th>BENEFICIO NETO</th>
<th>TRATAMIENTO</th>
<th>COSTOS VARIABLES</th>
<th>CAMBIO EN BENEFICIO NETO</th>
<th>CAMBIO EN COSTOS VARIABLES</th>
<th>TRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1309.22</td>
<td>Azinfos-metil</td>
<td>433.84</td>
<td>38.13</td>
<td>4.1</td>
<td>930</td>
</tr>
<tr>
<td>Control supervisado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1271.09</td>
<td>Malation/metil</td>
<td>489.54</td>
<td>132.38</td>
<td>59.28</td>
<td>223.4</td>
</tr>
<tr>
<td>Control supervisado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1138.71</td>
<td>Malation+propoxur</td>
<td>430.28</td>
<td>1138.71</td>
<td>430.28</td>
<td>264.6</td>
</tr>
<tr>
<td>Control supervisado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>BENEFICIO NETO</th>
<th>COSTOS VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malation+propoxur 8d</td>
<td>3105.09</td>
<td>578.32*</td>
</tr>
<tr>
<td>Azinfos-metil C.S.</td>
<td>3070.85</td>
<td>534.37*</td>
</tr>
<tr>
<td>Malation</td>
<td>3041.28</td>
<td>862.07</td>
</tr>
<tr>
<td>etil-paration 5d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malation</td>
<td>3031.72</td>
<td>489.54*</td>
</tr>
<tr>
<td>etil-paration C.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyflurin 8d</td>
<td>2756.87</td>
<td>824.35</td>
</tr>
<tr>
<td>Malation+propoxur C.S.</td>
<td></td>
<td>430.29*</td>
</tr>
<tr>
<td>Cyflurin 3d</td>
<td>2679.31</td>
<td>2001.99</td>
</tr>
<tr>
<td>Malation</td>
<td>2435.09</td>
<td>548.59</td>
</tr>
<tr>
<td>/metil-paration 8d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malation+propoxur 5d</td>
<td>2140.09</td>
<td>908.79</td>
</tr>
<tr>
<td>Azinfos-metil 8d</td>
<td>2128.94</td>
<td>833.64</td>
</tr>
<tr>
<td>Cyflurin C.S.</td>
<td>2104.34</td>
<td>559.00</td>
</tr>
<tr>
<td>Cyflurin 5d</td>
<td>1954.28</td>
<td>1295.40</td>
</tr>
<tr>
<td>Malation+propoxur 8d</td>
<td>1725.68</td>
<td>1404.50</td>
</tr>
<tr>
<td>Malation</td>
<td>1697.57</td>
<td>1332.29</td>
</tr>
<tr>
<td>/metil-paration 3d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azinfos-metil 5d</td>
<td>1321.26</td>
<td>1310.01</td>
</tr>
<tr>
<td>Azinfos-metil 3d</td>
<td>172.57</td>
<td>2024.55</td>
</tr>
</tbody>
</table>

Treatamientos no dominados.
CUADRO 10. Análisis marginal de beneficios netos. Análisis de sensibilidad con un aumento de precio del 10% del azinfos-metil.

<table>
<thead>
<tr>
<th>BENEFICIO NETO</th>
<th>TRATAMIENTO</th>
<th>COSTOS VARIABLES</th>
<th>CAMBIO NETO BENEFICIO</th>
<th>CAMBIO COSTOS VARIABLES</th>
<th>TRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3070.85</td>
<td>Azinfos-metil</td>
<td>576.32</td>
<td>34.25</td>
<td>43.45</td>
<td>78.80</td>
</tr>
<tr>
<td>3031.72</td>
<td>Malation/metil</td>
<td>534.87</td>
<td>39.13</td>
<td>45.33</td>
<td>86.32</td>
</tr>
<tr>
<td></td>
<td>Control supervisado</td>
<td>488.54</td>
<td>324.03</td>
<td>59.26</td>
<td>546.79</td>
</tr>
<tr>
<td>2707.89</td>
<td>Malation+propoxur</td>
<td>430.29</td>
<td>2707.89</td>
<td>430.22</td>
<td>629.28</td>
</tr>
<tr>
<td></td>
<td>Control supervisado</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

taciones de capital del productor. Esto consiste en gastar menos en los plaguicidas, al sustituir productos más baratos por el mejor. Esto en caso de que el agricultor no cuente con dinero suficiente para pagar el uso del tratamiento superior.

- En el análisis de retorno mínimo, los resultados son similares a los obtenidos con los rendimientos totales. Esto indica que la producción resultante de los tratamientos seleccionados es estable y los retornos marginales se mantienen a pesar de una disminución en el rendimiento.

- En el análisis de sensibilidad se muestra que una disminución del precio del producto del 50% no afecta los tratamientos seleccionados, siendo estos todavía rentables y con tasas de retorno altas. Respecto al aumento de precio del plaguicida del mejor tratamiento (Azinfos-metil C.S.) en 10% y mantenerse los precios de los otros plaguicidas, la recomendación varía al resultar mejor aplicar Malation+propoxur cada 8 días. Aunque el tratamiento Azinfos-metil se mantiene como uno de los mejores y como alternativa a la nueva recomendación.
- Estos resultados muestran, en términos generales, que en el caso del picudo del chile dulce, la aplicación de los plaguicidas según el umbral de decisión, es económicamente mejor que aplicarlos en forma calendarizada. Solo si se aumenta el costo del Azinphosmetil en 10 porciento, se hace rentable aplicar Malation + Propoxur cada ocho días. Según las situaciones analizadas, no se justifica aplicar los plaguicidas en el control del picudo cada tres o cinco días, lo que es similar a lo que hace el agricultor.

BIBLIOGRAFÍA

<table>
<thead>
<tr>
<th>Producto aplicado</th>
<th>Frecuencia</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>PROMEDIO COSECHADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALATON/METIL-PARATHON</td>
<td>3 DIAS</td>
<td>4897.5</td>
<td>3537.5</td>
<td>3147.5</td>
<td>1347.5</td>
<td>3032.5</td>
</tr>
<tr>
<td>MALATON/METIL-PARATHON</td>
<td>5 DIAS</td>
<td>3998.0</td>
<td>4657.5</td>
<td>3982.5</td>
<td>3462.5</td>
<td>3903.1</td>
</tr>
<tr>
<td>MALATON/METIL-PARATHON</td>
<td>8 DIAS</td>
<td>4352.5</td>
<td>2747.5</td>
<td>2970.0</td>
<td>1865.0</td>
<td>2985.0</td>
</tr>
<tr>
<td>MALATON/METIL-PARATHON</td>
<td>C.S.</td>
<td>3162.5</td>
<td>3992.5</td>
<td>4152.5</td>
<td>2777.5</td>
<td>3521.3</td>
</tr>
<tr>
<td>CYFLUTRIN</td>
<td>3 DIAS</td>
<td>5852.5</td>
<td>5145.0</td>
<td>4982.5</td>
<td>3545.0</td>
<td>4681.5</td>
</tr>
<tr>
<td>CYFLUTRIN</td>
<td>5 DIAS</td>
<td>2572.5</td>
<td>5680.0</td>
<td>5777.5</td>
<td>2975.0</td>
<td>3249.4</td>
</tr>
<tr>
<td>CYFLUTRIN</td>
<td>8 DIAS</td>
<td>4628.0</td>
<td>5437.5</td>
<td>2802.5</td>
<td>1962.5</td>
<td>3500.0</td>
</tr>
<tr>
<td>CYFLUTRIN</td>
<td>C.S.</td>
<td>2715.0</td>
<td>3267.5</td>
<td>3182.5</td>
<td>1510.0</td>
<td>2668.0</td>
</tr>
<tr>
<td>AZINFOS-METIL</td>
<td>3 DIAS</td>
<td>2722.5</td>
<td>3587.5</td>
<td>1468.0</td>
<td>1820.0</td>
<td>2197.5</td>
</tr>
<tr>
<td>AZINFOS-METIL</td>
<td>5 DIAS</td>
<td>3367.5</td>
<td>2655.0</td>
<td>2805.0</td>
<td>2217.5</td>
<td>2631.5</td>
</tr>
<tr>
<td>AZINFOS-METIL</td>
<td>8 DIAS</td>
<td>2947.5</td>
<td>3245.0</td>
<td>3175.0</td>
<td>2480.0</td>
<td>2961.9</td>
</tr>
<tr>
<td>AZINFOS-METIL</td>
<td>C.S.</td>
<td>3395.0</td>
<td>3252.5</td>
<td>4522.5</td>
<td>3252.5</td>
<td>3605.6</td>
</tr>
<tr>
<td>MALATON+PRODIUR</td>
<td>3 DIAS</td>
<td>4718.0</td>
<td>4317.5</td>
<td>1942.5</td>
<td>1592.5</td>
<td>3138.6</td>
</tr>
<tr>
<td>MALATON+PRODIUR</td>
<td>5 DIAS</td>
<td>4855.0</td>
<td>2742.5</td>
<td>2368.0</td>
<td>3037.5</td>
<td>3048.0</td>
</tr>
<tr>
<td>MALATON+PRODIUR</td>
<td>8 DIAS</td>
<td>4680.0</td>
<td>4967.5</td>
<td>2148.0</td>
<td>2785.0</td>
<td>3623.1</td>
</tr>
<tr>
<td>MALATON+PRODIUR</td>
<td>C.S.</td>
<td>3877.5</td>
<td>4380.0</td>
<td>2382.5</td>
<td>1915.0</td>
<td>3138.0</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>PATALIÓN/NETIL-PARR-ATION</td>
<td>CYFLUTRIN</td>
<td>ZINFOS-METIL</td>
<td>PATULATION + PROPOXUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 días</td>
<td>5 días</td>
<td>8 días</td>
<td>C.S.</td>
<td>3 días</td>
<td>5 días</td>
</tr>
<tr>
<td>INGRESOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rend. Kg/ha</td>
<td>3029.8</td>
<td>3003.5</td>
<td>2983.6</td>
<td>5321.25</td>
<td>4681.3</td>
<td>3149.68</td>
</tr>
<tr>
<td>Precio Kg/lt</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Beneficio bruto</td>
<td>3029.8</td>
<td>3003.5</td>
<td>2983.6</td>
<td>5321.25</td>
<td>4681.3</td>
<td>3149.68</td>
</tr>
<tr>
<td>COSTOS VARIABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precio unit.</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>25.9</td>
</tr>
<tr>
<td>Subtotal</td>
<td>212.52</td>
<td>799.26</td>
<td>506.52</td>
<td>399.63</td>
<td>1904.92</td>
<td>1232.59</td>
</tr>
<tr>
<td>Cant. prod. (lt/ha)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Precio unit.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td># de aplicaciones</td>
<td>17</td>
<td>11</td>
<td>7</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Costo por aplic.</td>
<td>5.71</td>
<td>5.71</td>
<td>5.71</td>
<td>5.71</td>
<td>5.71</td>
<td>5.71</td>
</tr>
<tr>
<td>Subtotal</td>
<td>97.07</td>
<td>62.81</td>
<td>39.97</td>
<td>31.405</td>
<td>31.405</td>
<td>31.405</td>
</tr>
<tr>
<td># de control super.</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Jornales</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Subtotal</td>
<td>59.5</td>
<td>59.5</td>
<td>59.5</td>
<td>59.5</td>
<td>59.5</td>
<td>59.5</td>
</tr>
<tr>
<td>TOTAL COSTOS</td>
<td>1352.29</td>
<td>662.07</td>
<td>549.59</td>
<td>549.54</td>
<td>2001.99</td>
<td>1295.40</td>
</tr>
<tr>
<td>BENEFICIO NETO</td>
<td>1697.51</td>
<td>3041.28</td>
<td>2425.08</td>
<td>3031.72</td>
<td>2579.31</td>
<td>1854.28</td>
</tr>
</tbody>
</table>

Anexo 2. Presupuestos parciales experimento control de A. eugenia en chile dulce, Cabanas, Zacapa.

Anexo 3. Presupuestos parciales experimento control de A. eugenia en chile dulce, Cabanas, Zacapa. Utilizando el promedio de dos rendimientos por tratamiento nos bajamos.

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>MALTATION/METIL-PARÁMETROS</th>
<th>CYFLUTRIN</th>
<th>ARIZNOS-METIL</th>
<th>MALTATION + PROPOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.S.</td>
<td>3 días</td>
<td>5 días</td>
<td>8 días</td>
<td>C.S.</td>
</tr>
<tr>
<td>INGRESOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rend. Kg/ha</td>
<td>3302,95</td>
<td>3903,35</td>
<td>3938,67</td>
<td>3525,21</td>
</tr>
<tr>
<td>Precio $/kg</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Beneficio Bruto</td>
<td>1514,95</td>
<td>1951,67</td>
<td>1941,68</td>
<td>1760,68</td>
</tr>
<tr>
<td>COSTOS VARIABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo unit.</td>
<td>5,19</td>
<td>5,19</td>
<td>5,19</td>
<td>5,19</td>
</tr>
<tr>
<td>Precio unit.</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1235,22</td>
<td>799,26</td>
<td>596,62</td>
<td>399,63</td>
</tr>
<tr>
<td>TOTAL COSTOS</td>
<td>1322,29</td>
<td>862,07</td>
<td>549,59</td>
<td>469,54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>MALTATION/METIL-PARÁMETROS</th>
<th>CYFLUTRIN</th>
<th>ARIZNOS-METIL</th>
<th>MALTATION + PROPOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.S.</td>
<td>3 días</td>
<td>5 días</td>
<td>8 días</td>
<td>C.S.</td>
</tr>
<tr>
<td>INGRESOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rend. Kg/ha</td>
<td>3302,95</td>
<td>3903,35</td>
<td>3938,67</td>
<td>3525,21</td>
</tr>
<tr>
<td>Precio $/kg</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Beneficio Bruto</td>
<td>1514,95</td>
<td>1951,67</td>
<td>1941,68</td>
<td>1760,68</td>
</tr>
<tr>
<td>COSTOS VARIABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo unit.</td>
<td>5,19</td>
<td>5,19</td>
<td>5,19</td>
<td>5,19</td>
</tr>
<tr>
<td>Precio unit.</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1235,22</td>
<td>799,26</td>
<td>596,62</td>
<td>399,63</td>
</tr>
<tr>
<td>TOTAL COSTOS</td>
<td>1322,29</td>
<td>862,07</td>
<td>549,59</td>
<td>469,54</td>
</tr>
</tbody>
</table>

BENEFICIO NETO

1697,81
3041,29
2495,08
3031,72
2679,31
1954,26
2756,67
2104,34
172,58
1321,26
2168,94
3070,95
1725,68
2140,08
3105,09
2707,69