MANEJO INTEGRADO DE JOBOTOS Phyllopogha spp. (Scarabaeidae) EN EL CULTIVO DE LA CAÑA DE AZÚCAR EN COSTA RICA*

Francisco Badilla Fernández**

INTRODUCCIÓN

La caña de azúcar se cultiva en Costa Rica en unas 43,300 ha, y genera gran cantidad de mano de obra y divisas. Durante los últimos veinte años participó con un 4.5% como promedio del producto interno bruto agropecuario (PIB). Representa el producto agropecuario más importante en cuanto a consumo interno, lo cual demuestra su importancia para el país (Chaves 1993).

Uno de los factores limitantes del cultivo, lo constituyen las plagas, donde los insectos son los que más influyen en la disminución de los rendimientos. El Programa de Entomología de la Dirección de Investigación y Extensión de la Caña de Azúcar (DIECA), se creó hace diez años para iniciar trabajos de control biológico, en el taladrador Diatraea spp. Sus resultados son altamente satisfactorios y rentables, lo cual ha estimulado la creación de otros proyectos sobre manejo integrado de otros insectos de importancia económica (Badilla et al. 1991).

En América Central, las especies de la familia Scarabaeidae que causan daños a los cultivos están presentes en los generos Phyllopogha, Anomala, Cyclocephala y Bathynus (King 1994). Las larvas de Phyllopogha causan pérdidas severas en muchos cultivos en Costa Rica, tales como: café, maíz, sorgo, papa, hortalizas, caña de azúcar. (González 1989, King y Saunders 1984).

En la caña de azúcar el control de esta plaga debe llevarse a cabo en forma integrada, dado que la utilización de insecticidas no ha probado ser una práctica viable, por
factores que afectan el buen resultado de esta estrategia, tales como: 1) La altura de la planta, si el cultivo está cerca de hijosanos se presentan en picos poblacionales altos, no es posible una buena aplicación. 2) Los hijosanos son colocados durante un período prolongado, dependiendo de las condiciones climáticas. 3) Es difícil localizar oportunamente las áreas infectadas, ya que el daño solo es notorio hasta avanzado el período vegetativo. 4) La movilidad de los productos químicos en los suelos pesados es mínima.

Entre las medidas de combate integrado de estas plagas, se menciona el cultural, trampas de luz, cultivos trampa y el biológico. Según Prewitt y Summears (1981), las larvas de hijosanos blancos del género Lycus, mueren al inundar el terreno durante ocho días. Este método no se emplea en caña en el oeste, ya que sólo se utiliza para destruir las infestaciones antes de la siembra. La agricultura protege la caña joven, con su acción mecánica destruye muchas larvas y expone otra vez al alimentación de las aves. Según estos autores, en las Everglades, de la Florida, el control de los hijosanos blancos en la caña en pie, es en gran parte biológico. La naturaleza gregaria de estas especies nos permite su eliminación, sin que haya contribuido a un incremento rápido de los hongos Metarhizium spp., y parasitoides de la familia Tiphinae. En algunas áreas, según estos autores, los lúidos han parasitado hasta un 50% de las larvas colectadas, provocando su declinación a partir del año 1978.

El control microbiano de plagas en el cultivo de la caña de azúcar (Badilla y Alves 1991), es una estrategia viable ya que este cultivo presenta ambiente adecuado, temperatura del suelo favorable para el desarrollo de hongos entomopatógenos y suelos con contenidos de materia orgánica que favorecen la colonización y el desarrollo de epizoos del de estos. Samuels y Pinnock (1990) estudiaron la acción de Metarhizium anisopliae en el control de larvas de hijosanos blancos de la especie Antiragus parvulicus en el cultivo de la caña de azúcar en Australia. Encontraron en laboratorio, que un amplio amparo de alaísmientos de M. anisopliae fueron patógenos contra estas especies. En hongos en el campo sobrevivió por 30 meses y controló esta plaga a niveles comerciales similares a los de los insecticidas. Millner (1990) encontró tres aislamientos de M. anisopliae promotores para el control, determinando que el L_{50} fue de 1 a 5 x 10^4 conidos/g en el suelo.

Shannon et al. (1993) utilizaron los hongos Beauveria bassiana, Beauveria brongniartii, Metarhizium anisopliae y Metarhizium flavoviride para el control de larvas en laboratorio. Obtuvieron alaisamientos promisíos, la cual permite seguir estudiando esta posibilidad. Un trabajo en este

sentido está iniciando el Programa de Entomología de DIECA. Vargas y Abarca (1991) evaluaron la patogenidad de Bacillus cereus y Erwinia spp., sobre jacobos del género Phytophaga. En pruebas con huevos y larvas L1, L2 y L3, criadas en condiciones controladas, obtuvieron hasta 100% de mortalidad.

El objetivo de este trabajo es discutir estrategias implementadas en Costa Rica, en el manejo integrado de hijosanos blancos en el cultivo de la caña de azúcar.

ESTRATEGIAS DE MANEJO INTEGRADO

Distribución de la plaga en el país. En la región del Pacífico Seco (Guadalupe, Puntarenas, Cañas y Filadelfia), se presenta el mayor porcentaje (92.7%) de área afectada (Cuadro 1). La región de San Isidro del General representa el 4.6% y finalmente, la región de Grecia y San Ramón el 2.3%. Este comportamiento en el cultivo posiblemente se debe a que las características climáticas del Pacífico Seco, son favorables para el desarrollo de la plaga; y que la caña de azúcar se cultiva extensamente existiendo pocos refugios para enemigos naturales. El uso generalizado de insecticidas granulados, es otro factor que probablemente ha creado alguna resistencia en la plaga.

Un muestreo preliminar indica que la especie predominante en Guanacaste es Phytophaga serpentina, existiendo la presencia de P. vicina. En las regiones del Valle Central, la especie predominante es P. menziesii. En las otras regiones, se están haciendo recolectas para su identificación.

<table>
<thead>
<tr>
<th>LOCALIDAD</th>
<th>ÁREA (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guadalupe</td>
<td>2500</td>
<td>38.6</td>
</tr>
<tr>
<td>Puntarenas</td>
<td>2000</td>
<td>30.4</td>
</tr>
<tr>
<td>Cañas</td>
<td>850</td>
<td>12.9</td>
</tr>
<tr>
<td>Filadelfia (El Viejo)</td>
<td>750</td>
<td>11.4</td>
</tr>
<tr>
<td>San Isidro del General</td>
<td>300</td>
<td>4.6</td>
</tr>
<tr>
<td>Grecia y San Ramón</td>
<td>180</td>
<td>2.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6560</td>
<td>100</td>
</tr>
</tbody>
</table>

27

<table>
<thead>
<tr>
<th>FINCA</th>
<th>ÁREA (HA)</th>
<th>PUNTOS DE MUESTREO</th>
<th>PROMEDIO DE LARVAS (m²)</th>
<th>DEVIAC. EST. (%)</th>
<th>C. V. (%)</th>
<th>LARVAS/HÁ (ESTIMADO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. AVIAC.</td>
<td>12.26</td>
<td>40</td>
<td>22.88</td>
<td>15.27</td>
<td>66.8</td>
<td>226750</td>
</tr>
<tr>
<td>GRANITA</td>
<td>12.69</td>
<td>20</td>
<td>17.60</td>
<td>7.54</td>
<td>42.0</td>
<td>176000</td>
</tr>
<tr>
<td>SANTANA</td>
<td>12.26</td>
<td>13</td>
<td>12.49</td>
<td>8.17</td>
<td>64.4</td>
<td>119200</td>
</tr>
<tr>
<td>ISLAS</td>
<td>6.92</td>
<td>15</td>
<td>12.70</td>
<td>4.85</td>
<td>37.9</td>
<td>122000</td>
</tr>
<tr>
<td>R. VIEJO</td>
<td>6.56</td>
<td>20</td>
<td>11.15</td>
<td>1.62</td>
<td>13.9</td>
<td>115528</td>
</tr>
<tr>
<td>GRANITA</td>
<td>5.26</td>
<td>15</td>
<td>11.20</td>
<td>7.42</td>
<td>66.3</td>
<td>112000</td>
</tr>
<tr>
<td>ISLAS</td>
<td>3.35</td>
<td>15</td>
<td>10.32</td>
<td>6.59</td>
<td>63.8</td>
<td>109331</td>
</tr>
<tr>
<td>SANTANA</td>
<td>2.54</td>
<td>24</td>
<td>3.58</td>
<td>6.15</td>
<td>64.6</td>
<td>95833</td>
</tr>
<tr>
<td>SANTANA</td>
<td>2.70</td>
<td>14</td>
<td>3.71</td>
<td>7.44</td>
<td>67.6</td>
<td>97843</td>
</tr>
<tr>
<td>GRANITA</td>
<td>1.98</td>
<td>10</td>
<td>3.10</td>
<td>6.24</td>
<td>68.5</td>
<td>91000</td>
</tr>
<tr>
<td>SANTANA</td>
<td>9.70</td>
<td>15</td>
<td>5.00</td>
<td>7.97</td>
<td>88.5</td>
<td>90000</td>
</tr>
<tr>
<td>GRANITA</td>
<td>13.21</td>
<td>20</td>
<td>8.35</td>
<td>15.75</td>
<td>256.7</td>
<td>87500</td>
</tr>
<tr>
<td>SANTANA</td>
<td>1.98</td>
<td>10</td>
<td>8.40</td>
<td>5.77</td>
<td>60.6</td>
<td>84000</td>
</tr>
<tr>
<td>GRANITA</td>
<td>3.40</td>
<td>15</td>
<td>8.07</td>
<td>6.24</td>
<td>77.5</td>
<td>80875</td>
</tr>
<tr>
<td>SANTANA</td>
<td>2.59</td>
<td>13</td>
<td>7.69</td>
<td>7.93</td>
<td>103.0</td>
<td>76223</td>
</tr>
<tr>
<td>GUINEA</td>
<td>10.69</td>
<td>20</td>
<td>7.55</td>
<td>6.96</td>
<td>79.3</td>
<td>75612</td>
</tr>
<tr>
<td>SANTANA</td>
<td>2.54</td>
<td>13</td>
<td>7.08</td>
<td>7.39</td>
<td>56.4</td>
<td>70769</td>
</tr>
<tr>
<td>GRANITA</td>
<td>8.88</td>
<td>12</td>
<td>6.88</td>
<td>2.72</td>
<td>41.3</td>
<td>65833</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>107.7</td>
<td>7.6</td>
<td>75.3</td>
<td>207642</td>
</tr>
<tr>
<td>MEDIA</td>
<td>17</td>
<td>10.4</td>
<td>7.6</td>
<td>75.3</td>
<td>37.9</td>
<td>103866</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FINCA</th>
<th>PROMEDIO DE LARVAS (m²)</th>
<th>LARVAS/HÁ (ESTIMADO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALTILLO</td>
<td>54.20</td>
<td>35.2</td>
</tr>
<tr>
<td>VEGUAS 01</td>
<td>10.11</td>
<td>27.1</td>
</tr>
<tr>
<td>TOROS 03</td>
<td>78.04</td>
<td>26.6</td>
</tr>
<tr>
<td>POLVAS. 01</td>
<td>10.30</td>
<td>25.3</td>
</tr>
<tr>
<td>POLVAS. 02</td>
<td>40.50</td>
<td>18.9</td>
</tr>
<tr>
<td>CORINZUELO</td>
<td>22.25</td>
<td>14.8</td>
</tr>
<tr>
<td>TOROS 02</td>
<td>117.80</td>
<td>13.2</td>
</tr>
<tr>
<td>MOCAL</td>
<td>101.00</td>
<td>12.6</td>
</tr>
<tr>
<td>POLVAS. 01</td>
<td>27.00</td>
<td>9.1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>470.00</td>
<td>182.5</td>
</tr>
<tr>
<td>MEDIA</td>
<td>52.20</td>
<td>20.3</td>
</tr>
<tr>
<td>C. V. %</td>
<td>74.10</td>
<td>42.6</td>
</tr>
</tbody>
</table>

Fuentes: Agr. Marco A. Chacon de CATSA.

Cuantificación de larvas. Para determinar el número de larvas/m² y por ha, se realizó un muestreo de 4 a 5 m²/ha distribuidos al azar, a 30 cm de profundidad.

Se observó (Cuadro 2) el número de larvas de Phytophaga spp colectadas por m² y el número de larvas/ha en 107 ha muestreadas, durante 1987, en el ingenio El Viejo, Guanacaste. El número de larvas/m² (10.4) fue superior a los niveles de control reportados por King y Saunders (1984) para el cultivo del maíz.

En la Central Azucarera (CATSA) el número de larvas/m² (Cuadro 3), es de 20.3 y el de larvas/ha promedio de 203.06, el cual supera al obtenido en el ingenio El Viejo. Este valor es superior al nivel de control informado para otros cultivos (King y Saunders 1984).
Trampas de luz. Se utilizó una trampa de luz para capturar adultos, tipo "Luz de Guía" (Silveira Neto 1972) y modificada por el autor. Esta trampa utiliza una lámpara de luz blanca de 12 voltios, la cual es adaptada a una batería (Fig. 1).

La media de captura por trampa fue de 2,648, con valores hasta de 5,415 adultos/trampa/noche (Cuadro 4, Fig. 2). Para 1994 se tomaron valores de 33 días de captura en donde se presentó una captura media de 2,105 adultos, con valores de 8,287 adultos por noche/trampa (Cuadro 5 y Fig. 3). En este periodo se obtuvieron capturas de hasta 27,000 adultos/trampa.

Las mayores capturas/trampa, se lograron del cuarto al octavo día después de las lluvias (30/04-07/05), ya que la

Prácticas Culturales. Las labores más apropiadas son el arado profundo e inundación de campos, como estrategias fundamentales de control. El exponer los campos antes de realizar el plantío permite la acción de enemigos naturales como los sapos (Bufo marinus) garzas (Bubulus ibis), y otras aves que abundan en Guanacaste. Esta labor no se ha cuantificado en el cultivo en Costa Rica, pero contribuye a disminuir las poblaciones.

<table>
<thead>
<tr>
<th>FECHA</th>
<th>CAPTURA TOTAL</th>
<th>ADULTOS/ TRAMPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/5</td>
<td>24,546</td>
<td>3,068</td>
</tr>
<tr>
<td>11/5</td>
<td>28,000</td>
<td>3,500</td>
</tr>
<tr>
<td>12/5</td>
<td>25,000</td>
<td>3,125</td>
</tr>
<tr>
<td>13/5</td>
<td>32,000</td>
<td>4,000</td>
</tr>
<tr>
<td>14/5</td>
<td>34,000</td>
<td>4,250</td>
</tr>
<tr>
<td>15/5</td>
<td>31,989</td>
<td>1,499</td>
</tr>
<tr>
<td>16/5</td>
<td>43,318</td>
<td>5,415</td>
</tr>
<tr>
<td>17/5</td>
<td>29,406</td>
<td>3,674</td>
</tr>
<tr>
<td>18/5</td>
<td>32,518</td>
<td>3,359</td>
</tr>
<tr>
<td>19/5</td>
<td>6,780</td>
<td>530</td>
</tr>
<tr>
<td>20/5</td>
<td>10,858</td>
<td>1,551</td>
</tr>
<tr>
<td>21/5</td>
<td>24,882</td>
<td>3,554</td>
</tr>
<tr>
<td>22/5</td>
<td>5,558</td>
<td>898</td>
</tr>
<tr>
<td>23/5</td>
<td>180</td>
<td>26</td>
</tr>
<tr>
<td>TOTAL</td>
<td>288,037</td>
<td>37,072</td>
</tr>
<tr>
<td>MEDIA</td>
<td>20574</td>
<td>2648</td>
</tr>
<tr>
<td>CV %</td>
<td>63.3</td>
<td>61.20</td>
</tr>
</tbody>
</table>

CUADRO 5. Captura de adultos de Phytophaga spp. capturados por trampa de luz del 27 de abril al 09 de junio, 1994, CATSA, Guanacaste, Costa Rica.

<table>
<thead>
<tr>
<th>FECHA</th>
<th>CAPTURA TOTAL</th>
<th>PROMEDIO DE ADULTOS/TRAMPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/04</td>
<td>155</td>
<td>155</td>
</tr>
<tr>
<td>28/04</td>
<td>513</td>
<td>256</td>
</tr>
<tr>
<td>29/04</td>
<td>1,440</td>
<td>1,931</td>
</tr>
<tr>
<td>30/04</td>
<td>13,420</td>
<td>8,877</td>
</tr>
<tr>
<td>01/05</td>
<td>27,700</td>
<td>6,628</td>
</tr>
<tr>
<td>02/05</td>
<td>40,060</td>
<td>6,710</td>
</tr>
<tr>
<td>03/05</td>
<td>22,800</td>
<td>3,813</td>
</tr>
<tr>
<td>04/05</td>
<td>31,900</td>
<td>5,317</td>
</tr>
<tr>
<td>05/05</td>
<td>25,500</td>
<td>4,217</td>
</tr>
<tr>
<td>06/05</td>
<td>15,484</td>
<td>2,640</td>
</tr>
<tr>
<td>07/05</td>
<td>12,100</td>
<td>2,430</td>
</tr>
<tr>
<td>08/05</td>
<td>20,900</td>
<td>4,180</td>
</tr>
<tr>
<td>09/05</td>
<td>12,100</td>
<td>2,430</td>
</tr>
<tr>
<td>10/05</td>
<td>20,900</td>
<td>4,180</td>
</tr>
<tr>
<td>11/05</td>
<td>10,120</td>
<td>2,024</td>
</tr>
<tr>
<td>12/05</td>
<td>10,780</td>
<td>2,695</td>
</tr>
<tr>
<td>13/05</td>
<td>8,910</td>
<td>1,233</td>
</tr>
<tr>
<td>14/05</td>
<td>6,490</td>
<td>927</td>
</tr>
<tr>
<td>15/05</td>
<td>6,050</td>
<td>1,008</td>
</tr>
<tr>
<td>16/05</td>
<td>2,785</td>
<td>556</td>
</tr>
<tr>
<td>17/05</td>
<td>2,535</td>
<td>422</td>
</tr>
<tr>
<td>18/05</td>
<td>3,550</td>
<td>550</td>
</tr>
<tr>
<td>19/05</td>
<td>6,270</td>
<td>896</td>
</tr>
<tr>
<td>20/05</td>
<td>9,125</td>
<td>1,925</td>
</tr>
<tr>
<td>21/05</td>
<td>3,740</td>
<td>1,870</td>
</tr>
<tr>
<td>22/05</td>
<td>5,170</td>
<td>1,854</td>
</tr>
<tr>
<td>01/06</td>
<td>4,670</td>
<td>814</td>
</tr>
<tr>
<td>02/06</td>
<td>3,610</td>
<td>602</td>
</tr>
<tr>
<td>03/06</td>
<td>2,645</td>
<td>384</td>
</tr>
<tr>
<td>04/06</td>
<td>262</td>
<td>262</td>
</tr>
<tr>
<td>05/06</td>
<td>6,99</td>
<td>609</td>
</tr>
<tr>
<td>06/06</td>
<td>4,782</td>
<td>797</td>
</tr>
<tr>
<td>07/06</td>
<td>2,660</td>
<td>528</td>
</tr>
<tr>
<td>08/06</td>
<td>1,987</td>
<td>397</td>
</tr>
<tr>
<td>09/06</td>
<td>1,452</td>
<td>290</td>
</tr>
<tr>
<td>TOTAL</td>
<td>308,108</td>
<td>68,466</td>
</tr>
<tr>
<td>MEDIA</td>
<td>9,008</td>
<td>2,105</td>
</tr>
<tr>
<td>CV %</td>
<td>106.4</td>
<td>103.6</td>
</tr>
</tbody>
</table>

primer lluvia cayó el 26/04. Un segundo pib de captura se produjo el 17 de mayo, tres días después de un aguacero fuerte (Fig. 3). Este comportamiento coincide con varios autores, para quienes la lluvia es el principal factor para estimular emergencia de adultos. La mayor frecuencia de las capturas está entre las 18:15 y las 20:00 h. A partir de esta hora disminuye la colecta de adultos en las trampas.

<table>
<thead>
<tr>
<th>QUINCHE</th>
<th>MALINCHÉ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FERMA</td>
<td>NO. DE ADULTOS</td>
</tr>
<tr>
<td>27/04</td>
<td>144</td>
</tr>
<tr>
<td>28/04</td>
<td>321</td>
</tr>
<tr>
<td>29/04</td>
<td>922</td>
</tr>
<tr>
<td>30/04</td>
<td>4,400</td>
</tr>
<tr>
<td>08/05</td>
<td>27,940</td>
</tr>
<tr>
<td>09/05</td>
<td>10,040</td>
</tr>
<tr>
<td>10/05</td>
<td>23,320</td>
</tr>
<tr>
<td>11/05</td>
<td>11,920</td>
</tr>
<tr>
<td>12/05</td>
<td>6,391</td>
</tr>
<tr>
<td>13/05</td>
<td>5,941</td>
</tr>
<tr>
<td>14/05</td>
<td>5,941</td>
</tr>
<tr>
<td>15/05</td>
<td>4,400</td>
</tr>
<tr>
<td>16/05</td>
<td>2,420</td>
</tr>
<tr>
<td>17/05</td>
<td>2,420</td>
</tr>
<tr>
<td>18/05</td>
<td>4,950</td>
</tr>
<tr>
<td>19/05</td>
<td>4,620</td>
</tr>
<tr>
<td>20/05</td>
<td>4,400</td>
</tr>
<tr>
<td>21/05</td>
<td>4,400</td>
</tr>
<tr>
<td>22/05</td>
<td>4,400</td>
</tr>
<tr>
<td>23/05</td>
<td>4,400</td>
</tr>
<tr>
<td>24/05</td>
<td>4,400</td>
</tr>
<tr>
<td>25/05</td>
<td>1,540</td>
</tr>
<tr>
<td>26/05</td>
<td>3,980</td>
</tr>
<tr>
<td>27/05</td>
<td>4,950</td>
</tr>
<tr>
<td>06/06</td>
<td>1,326</td>
</tr>
<tr>
<td>07/06</td>
<td>880</td>
</tr>
<tr>
<td>08/06</td>
<td>880</td>
</tr>
<tr>
<td>09/06</td>
<td>880</td>
</tr>
<tr>
<td>TOTAL</td>
<td>142,367</td>
</tr>
<tr>
<td>MEDIA</td>
<td>5,920</td>
</tr>
<tr>
<td>CV %</td>
<td>130.1</td>
</tr>
</tbody>
</table>

Fuente: Agr. Marco Antonio Chacón, Ing. CATSA, Guanacaste.

<table>
<thead>
<tr>
<th>FAMILIA</th>
<th>CANTIDAD (Nº)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scarabeidae 1/</td>
<td>4214</td>
<td>98.18</td>
</tr>
<tr>
<td>Coccinellidae</td>
<td>51</td>
<td>1.19</td>
</tr>
<tr>
<td>Scarabeidae</td>
<td>7</td>
<td>0.16</td>
</tr>
<tr>
<td>Notocidae</td>
<td>5</td>
<td>0.12</td>
</tr>
<tr>
<td>Plectridae</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>Antilidae</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>Holocarabidae</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>Centurididae</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Carabidae</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Staphylinidae</td>
<td>1</td>
<td>0.02</td>
</tr>
</tbody>
</table>

TOTAL 4292 100

1/ Phylopogha elenana

El promedio de adultos/trampa, cerca a los árboles de guácimo fue de 1991, mientras que en las cercanías a los árboles de malinche fue de 1980 adultos (Cuadro 6, Fig. 4). Durante las primeras diez días de la colecta hubo una captura mayor en los árboles de malinche. A partir de esa fecha se capturó un mayor número en trampas cercanas a los árboles de guácimo (Fig. 4).

Esto posiblemente se debió a que los adultos se alimentaron masivamente de las hojas de malinches en las primeras semanas de emergencia; por lo que en una segunda escisión había pocas hojas disponibles en estos árboles, posiblemente optaron por alimentarse de las hojas de guácimo.

La captura de otras familias de insectos fue menor en trampas próximas a árboles de malinche (Cuadro 7, Fig. 5), mientras que en las proximidades a árboles de guácimo hubo un 8,77% de especies de doce familias (Cuadro 8, Fig. 6), respecto a 1,82% y 11 familias en trampas cercanas al malinche.

Este sistema de colecta de adultos, demostró ser una estrategia viable en el Ingenio CATSA, ya que capturaron cientos de miles de adultos, y se disminuyó la población de huevos. La empresa expandió el programa mediante la adquisición de 25 trampas/inset. Esta es una alternativa viable para pequeños y medianos productores ya que es barato, fácil de manipular y un complemento adicional para toma de decisiones en la aplicación de insecticidas en cultivos de trampa.

Utilización de insecticidas

Insecticidas granulados. Su empleo en el cultivo de la caña de azúcar, a la hora de la siembra en la región del pacífico seco, es una práctica común, esto obedece a un criterio de poco técnico, ya que en la mayoría de los casos, se hace para “prevenir” el daño. En el cultivo de la caña, los esquejes utilizados como semilla demoran entre 22-30 días para producir raíces y de 30-45 días para generar raíces verdaderas, las cuales absorben los nutrientes. Esta característica del cultivo hace que la aplicación de insecticidas granulados a la hora de la siembra, no tengan tanto persistencia como para eliminar las primeras infestaciones, que son producto de los huevos puestos por las hembras emergidas con las primeras lluvias.

<table>
<thead>
<tr>
<th>FAMILIA</th>
<th>CANTIDAD (Nº)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scarabeidae 1/</td>
<td>3430</td>
<td>91.23</td>
</tr>
<tr>
<td>Coccinellidae</td>
<td>270</td>
<td>7.19</td>
</tr>
<tr>
<td>Coccinellidae</td>
<td>35</td>
<td>0.94</td>
</tr>
<tr>
<td>Staphylinidae</td>
<td>37</td>
<td>0.94</td>
</tr>
<tr>
<td>Notocidae</td>
<td>4</td>
<td>0.11</td>
</tr>
<tr>
<td>Plectridae</td>
<td>3</td>
<td>0.09</td>
</tr>
<tr>
<td>Antilidae</td>
<td>3</td>
<td>0.09</td>
</tr>
<tr>
<td>Holocarabidae</td>
<td>3</td>
<td>0.09</td>
</tr>
<tr>
<td>Centurididae</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Carabidae</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Staphylinidae</td>
<td>1</td>
<td>0.02</td>
</tr>
</tbody>
</table>

TOTAL 3780 100

1/ Phylopogha elenana

<table>
<thead>
<tr>
<th>TRATAMIENTO (HOMBRE GENERICO)</th>
<th>NÚMERO DE LARVAS (10 m²)</th>
<th>LARVAS/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxin</td>
<td>156</td>
<td>8.6 1 A</td>
</tr>
<tr>
<td>Fucario</td>
<td>140</td>
<td>7.7</td>
</tr>
<tr>
<td>Ethargrop</td>
<td>130</td>
<td>7.2</td>
</tr>
<tr>
<td>Stenophaga</td>
<td>129</td>
<td>7.1</td>
</tr>
<tr>
<td>Ectoello</td>
<td>127</td>
<td>7.1 B</td>
</tr>
<tr>
<td>Cheiripris</td>
<td>125</td>
<td>6.9</td>
</tr>
<tr>
<td>Cochitrus</td>
<td>124</td>
<td>6.8</td>
</tr>
<tr>
<td>Testigo</td>
<td>119</td>
<td>6.6</td>
</tr>
<tr>
<td>Aldicarb</td>
<td>104</td>
<td>5.7 1 C</td>
</tr>
</tbody>
</table>

TOTAL = 1353
PROMEDIO = 128.1 7.09 0.52

<table>
<thead>
<tr>
<th>NOMBRE COMÚN</th>
<th>NOMBRE CIENTÍFICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malinche</td>
<td>Canaspinia pulcherrima</td>
</tr>
<tr>
<td>Cañamo</td>
<td>Guazuma spp.</td>
</tr>
<tr>
<td>Jocote</td>
<td>Spondias purpurea</td>
</tr>
</tbody>
</table>

El efecto de los principales insecticidas del mercado, se evaluó a través de 8 productos en el ingenio El Viejo. La aplicación se hizo incorporando los productos al día de los surcos de caña, de 3 meses de edad con la ayuda de un aspirador. Se utilizó un bloque completamente al azar y tres repeticiones. Se realizaron dos muestras cada 15 días durante 90 días, en un m²/repetición.

Hubo un grupo intermedio de insecticidas cuyo número de larvas/m² fue igual al testigo, cuando fueron comparados con el intervalo de confianza de la media (Cuadro 2). El producto Foxm presentó valores de larvas/m², superiores al testigo. El dialisin fue el único producto que presentó valores menores que el testigo, sin embargo el valor de número de larvas/m² solo fue en promedio 0.9 larvas menor, lo cual a pesar de estar en otra categoría, separado por el intervalo de confianza, es muy próximo a la media. Para evaluar el verdadero impacto de los insecticidas en el control de jobos en el cultivo de la caña de azúcar, es necesario llevar los tratamientos a cosecha para determinar el rendimiento de ton/ha, así como el rendimiento técnico recuperable (kg de azúcar/ton de caña). Los resultados del ingenio El Viejo, demuestran que la acción de los insecticidas granulados no es una estrategia viable para el control de jobos en el cultivo de la caña de azúcar.

Insecticidas Líquidos: Esta práctica ha resultado exitosa en el control de adultos, cuando se encuentran copulando y alimentándose en áreas utilizadas como cultivos de trampas. En el pacífico occidente existen especies de árboles utilizados por los adultos como fuente de alimentación (Cuadro 10) (Halldredge y Poveda 1975).

El conocimiento de este hábito de comportamiento permitió diseñar una estrategia de manejo, con metatrafton aplicado en una dosis de 1.1/ha, con la utilización de un canón (Játao super 600), dirigido a las copias de los árboles. Esto se realizó entre las 18:30 y 20:30 h. Con esta estrategia, se han aplicado desde 1992 hasta el 10 de mayo 1994, 250 ha. Con este método, se contaron en media 6750 adultos/m² árbol/ha de malinche. Esta especie se sembró a 4 y 5 m de distancia, paralelas a las calles de comunicación del ingenio. Para la zafra 92-93 se estima que se mataron con este método cerca de 60 millones de adultos de Phyllophaga.

Hongos entomopatógenos: DIECA está realizando un proyecto para el control del larva de Phyllophaga spp., con hongos entomopatógenos Metarhizium anisopliae, M. flavocordiae, Beauveria bassiana y B. brongniartii con los siguientes objetivos:

- Seleccionar aislamientos patogénicos y virulentos en laboratorio para evaluar las mejores cepas en invernadero y campo.
- Evaluar diferentes formulaciones para aplicar los aislamientos en el campo.
- Estudiar la transmisión vertical de hongos en los sitios de postura, cuando el hongo se coloca en adultos.
- Evaluar la posibilidad de substituir insecticidas líquidos por hongos entomopatógenos, en el control de adultos en los árboles de malinche y guazumo.

CONCLUSIONES

- El control de los jobos en caña de azúcar se debe realizar en forma integrada, utilizando prácticas culturales, tractos de luz, cultivos de trampas y control biológico.
- Los insecticidas granulados, no son eficientes en el control de las larvas de Phyllophaga spp.
- Es necesaria una mayor investigación, en prácticas de manejo, principalmente con agentes entomopatógenos para desarrollar una estrategia de control confiable y económica.
AGRADECIMIENTO

LITERATURA CITADA

20 p.

MILNER, R.J. 1990. The selection of stenosis Metarthium annosae for control of Australian Sugarcane white grubs. In Proceedings and abstracts, IV International Colloquium on Invertebrate Pathology and Microbial control. Adelaide, Australia.

